《Nature》突破强化学习困境: “Dreamer” 算法开启通用智能新篇章

论文题目:Mastering Diverse Domains through World Models

论文地址:https://arxiv.org/pdf/2301.04104

创新点

  • 在人工智能领域,强化学习算法的通用性与扩展性始终是研究热点。DreamerV3 作为一款创新型算法,凭借固定超参数设置,成功在连续与离散动作、视觉及低维输入、2D 与 3D 等多元复杂环境中展现出卓越性能,成为当前多领域强化学习任务的领先解决方案。
  • DreamerV3 的核心架构围绕世界模型构建,通过深度挖掘环境信息,实现对环境的全面感知与模拟训练。其世界模型具备强大的预测能力,能够精准推演潜在动作可能引发的未来环境变化,为智能体提供高度凝练的环境表征,并赋予智能体前瞻性的规划能力。这种独特设计,使得算法可在不同应用场景下高效完成学习任务并做出最优决策。

方法

在算法设计层面,DreamerV3 提出了一套基于世界模型的通用强化学习框架。该算法由世界模型、评价网络(critic)和策略网络(actor)三大核心神经网络模块构成:世界模型负责对不同动作选择下的环境状态演变及结果进行预测;评价网络用于量化评估环境状态的价值;策略网络则以获取高价值状态为目标,学习最佳行动策略。三者协同运作,共同推动智能体在复杂环境中实现高效学习。

从性能对比数据来看,DreamerV3 展现出显著优势。通过对不同数据效率场景下的性能测试(以环境步数为横轴,任务得分或性能指标为纵轴),在多项基准测试中,相较于其他采用固定超参数的算法,DreamerV3 均实现性能超越。尤为值得关注的是,在 Minecraft 环境中,该算法打破传统依赖人类数据的局限,成功实现从零开始采集钻石,充分彰显其在复杂任务处理上的卓越能力。

在训练过程中,DreamerV3 主要包含世界模型学习与演员评论家学习两大环节。世界模型通过编码器将感官输入转化为随机表示,借助序列模型依据历史动作预测该表示的演变序列,同时完成奖励预测与片段持续判断;演员和评论家则基于世界模型输出的抽象表示进行学习优化,这种设计确保各模块紧密协作,实现高效学习与精准决策。

此外,DreamerV3 创新性引入 symlog 函数处理数据,相较于传统对数函数与恒等函数,symlog 函数在数据处理上优势明显。它能够有效压缩大幅值数据,同时完整保留数据符号信息,特别适用于处理不同领域中信号幅度差异显著的数据,进一步增强了算法的适应性与鲁棒性。

通过多组基准测试实验结果表明,DreamerV3 在不同环境下均保持出色表现。测试涵盖任务类型、环境步数、动作重复次数、环境实例数量、训练比率等多维度指标,同时详细记录了 GPU 使用时长与模型规模。这些数据为全面评估 DreamerV3 在各类场景下的应用效果与性能表现提供了详实依据,而其在 Minecraft 环境中的突破性表现,更充分验证了该算法应对稀疏奖励与复杂环境的强大能力,为强化学习技术的进一步发展提供了新思路与新方向。

关注“学长论文指导”公众号,回复“977C

领取强化学习最新前沿论文合集+开源代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值