如何查看bert等模型的梯度,用pytorch

print("=============更新之前===========")
temp = 0 #控制打印的参数个数
for name, parms in model.named_parameters():
    temp += 1
    if temp == 2:
        break
    print('-->name:', name)
    print('-->para:', parms)
    print('-->grad_requirs:', parms.requires_grad)
    print('-->grad_value:', parms.grad)
    print("===")
print("=============更新之后===========")
temp = 0 ##控制打印的参数个数
for name, parms in model.named_parameters():
    temp += 1
    if temp == 2:
        break
    print('-->name:', name)
    print('-->para:', parms)
    print('-->grad_requirs:', parms.requires_grad)
    print('-->grad_value:', parms.grad)
    print("===")
print(optimizer)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值