题目描述
给定一个正整数 n
,输出外观数列的第 n
项。
「外观数列」是一个整数序列,从数字 1 开始,序列中的每一项都是对前一项的描述。
你可以将其视作是由递归公式定义的数字字符串序列:
countAndSay(1) = "1"
countAndSay(n)
是对countAndSay(n-1)
的描述,然后转换成另一个数字字符串。
前五项如下:
1. 1
2. 11
3. 21
4. 1211
5. 111221
第一项是数字 1
描述前一项,这个数是 1 即 “ 一 个 1 ”,记作 "11"
描述前一项,这个数是 11 即 “ 二 个 1 ” ,记作 "21"
描述前一项,这个数是 21 即 “ 一 个 2 + 一 个 1 ” ,记作 "1211"
描述前一项,这个数是 1211 即 “ 一 个 1 + 一 个 2 + 二 个 1 ” ,记作 "111221"
要 描述 一个数字字符串,首先要将字符串分割为 最小 数量的组,每个组都由连续的最多 相同字符 组成。然后对于每个组,先描述字符的数量,然后描述字符,形成一个描述组。要将描述转换为数字字符串,先将每组中的字符数量用数字替换,再将所有描述组连接起来。
例如,数字字符串 "3322251"
的描述如下图:
示例 1:
输入:n = 1
输出:"1"
解释:这是一个基本样例。
示例 2:
输入:n = 4
输出:"1211"
解释:
countAndSay(1) = "1"
countAndSay(2) = 读 "1" = 一 个 1 = "11"
countAndSay(3) = 读 "11" = 二 个 1 = "21"
countAndSay(4) = 读 "21" = 一 个 2 + 一 个 1 = "12" + "11" = "1211"
提示:
1 <= n <= 30
解题方法
dfs
这道题和第37题一样,也是dfs。不过这道题写起来简单一些,思路一看完题目就想好了。
我来梳理一下。我们要想获得当前项的描述,就得先获得上一项的描述。获得上一项的描述后,我们再写处理逻辑。
那这样就简单了,书写处理逻辑时,在遍历上一项描述的过程中,我们只需要记录当前数字字符和当前数字字符出现的次数,并添加到当前结果集中,遍历完成后,就能获得最终结果。
java代码
public String countAndSay(int n) {
if (n == 1) {
return "1";
}
// 得到上一项的结果
String pre_result = countAndSay(n - 1);
int i = 0;
// 记录当前数字字符出现的次数
int len = 0;
// 记录当前数字字符
char c = pre_result.charAt(0);
StringBuilder sb = new StringBuilder();
while (i < pre_result.length()) {
if (pre_result.charAt(i) == c) {
len++;
} else {
sb.append(len);
sb.append(c);
c = pre_result.charAt(i);
len = 1;
}
i++;
}
sb.append(len);
sb.append(c);
return sb.toString();
}
复杂度分析
时间复杂度:
O
(
1
)
O(1)
O(1),dfs最大深数为30,每次dfs遍历字符串长度为常数级别。
空间复杂度:
O
(
1
)
O(1)
O(1),dfs最大深度为30,递归调用的存储空间是常数级别。
相似题目
[leetcode] 17. 电话号码的字母组合
[leetcode] 22. 括号生成
[leetcode] 37. 解数独
- 个人公众号
- 个人小游戏