一、前言
本文中的数据平台已迭代三个版本,从头开始遇到很多常见的难题,终于有片段时间整理一些已完善的文档,在此分享以供所需朋友的。实现参考,少走些弯路,在此篇幅中偏重于ES的优化,目前生产已存储百亿数据,性能良好,关于HBase,Hadoop的设计优化估计有很多文章可以参考,不再赘述。
二、需求说明
项目背景:在一业务系统中,部分表每天的数据量过亿,已按天分表,但业务上受限于按天查询,并且DB中只能保留3个月的数据(硬件高配),分库代价较高。
改进版本目标:
- 数据能跨月查询,并且支持1年以上的历史数据查询与导出。
- 按条件的数据查询秒级返回。
三、elasticsearch检索原理
3.1 关于ES和Lucene基础结构
谈到优化必须能了解组件的基本原理,才容易找到瓶颈所在,以免走多种弯路,先从ES的基础结构说起(如下图):
一些基本概念:
Cluster 包含多个Node的集群
Node 集群服务单元
Index 一个ES索引包含一个或多个物理分片,它只是这些分片的逻辑命名空间
Type 一个index的不同分类,6.x后只能配置一个type,以后将移除
Document 最基础的可被索引的数据单元,如一个JSON串
Shards 一个分片是一个底层的工作单元,它仅保存全部数据中的一部分,它是一个Lucence实例 (一个lucene索引最大包含2,147,483,519 (= Integer.MAX_VALUE - 128)个文档数量)
Replicas 分片备份,用于保障数据安全与分担检索压力
ES依赖一个重要的组件Lucene,关于数据结构的优化通常来说是对Lucene的优化,它是集群的一个存储于检索工作单元,结构如下图:
在Lucene中,分为索引(录入)与检索(查询)两部分,索引部分包含 分词器、过滤器、字符映射器 等&