国际象棋是世界上最古老的博弈游戏之一,和中国的围棋、象棋以及日本的将棋同享盛名。据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳。
而我们的主人公小Q,正是国际象棋的狂热爱好者。作为一个顶尖高手,他已不满足于普通的棋盘与规则,于是他跟他的好朋友小W决定将棋盘扩大以适应他们的新规则。
小Q找到了一张由N*M个正方形的格子组成的矩形纸片,每个格子被涂有黑白两种颜色之一。小Q想在这种纸中裁减一部分作为新棋盘,当然,他希望这个棋盘尽可能的大。
不过小Q还没有决定是找一个正方形的棋盘还是一个矩形的棋盘(当然,不管哪种,棋盘必须都黑白相间,即相邻的格子不同色),所以他希望可以找到最大的正方形棋盘面积和最大的矩形棋盘面积,从而决定哪个更好一些。
于是小Q找到了即将参加全国信息学竞赛的你,你能帮助他么?
输入格式:
包含两个整数 N N 和,分别表示矩形纸片的长和宽。接下来的 N N 行包含一个的01矩阵,表示这张矩形纸片的颜色(0表示白色,1表示黑色)。
输出格式:
包含两行,每行包含一个整数。第一行为可以找到的最大正方形棋盘的面积,第二行为可以找到的最大矩形棋盘的面积(注意正方形和矩形是可以相交或者包含的)。
输入样例#1:
3 3
1 0 1
0 1 0
1 0 0
输出样例#1:
4
6
链接:棋盘制作
解:
首先我们可以把行列数加起来为偶数(或奇数,看心情)的数取反,这样题目就变成了最大子矩阵问题。即在给出的矩形内取一个面积最大的数字相同的矩形。
然后我们可以很容易的想出 n3 n 3 算法:枚举所有矩形,判断是否符合条件,取最大值。(判断可以用前缀和做到 O(1) O ( 1 ) )。做到这里,你在洛谷上可以AC了(吐槽一下洛谷的水数据)。
正解是悬线法,表示做这道题的时候并不知道这种做法。简单来说:1、对于每个点记录它向上能拓展到的最大点。这个操作可以通过递推n^2做到。2、从左到右和从右到左扫一遍,记录每个点拓展的最大线段向左向右分别扩展的最大距离。3、对于每个点计算答案取最大值。我们发现对于第二个操作,暴力只能 n3 n 3 做,这里就需要单调栈了,对于每一行我们使用单调栈维护单增,要是当前点扩展长度比栈顶大,则弹栈至合法。然后当前点坐标和栈顶点坐标距离就是能扩展的距离。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<stack>
using namespace std;
struct lxy{
int ip,n;
};
int h[2005][2005];
int l[2005][2005];
int r[2005][2005];
int n,m;
int a[2005][2005];
int ans1=0,ans2=0;
stack d;
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
scanf("%d",&a[i][j]);
if((i+j)%2==1)
a[i][j]=a[i][j]^1;
}
for(int i=1;i<=m;i++)
for(int j=1;j<=n;j++)
{
if(j==1||(a[j][i]!=a[j-1][i]))
h[j][i]=1;
else
h[j][i]=h[j-1][i]+1;
}
for(int i=1;i<=n;i++)
{
lxy p;p.ip=1;p.n=h[i][1];
d.push(p);
for(int j=2;j<=m;j++)
{
if(a[i][j]!=a[i][j-1])d.top().n=0;
while(!d.empty()&&h[i][j]<=d.top().n)
d.pop();
if(d.empty())l[i][j]=j-1;
else
l[i][j]=j-d.top().ip-1;
p.ip=j;p.n=h[i][j];
d.push(p);
}
while(!d.empty())d.pop();
}
for(int i=1;i<=n;i++)
{
lxy p;p.ip=m;p.n=h[i][m];
d.push(p);
for(int j=m-1;j>=1;j--)
{
if(a[i][j]!=a[i][j+1])
d.top().n=0;
while(!d.empty()&&h[i][j]<=d.top().n)
d.pop();
if(d.empty())
r[i][j]=m-j;
else
r[i][j]=d.top().ip-j-1;
p.ip=j;p.n=h[i][j];
d.push(p);
}
while(!d.empty())d.pop();
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
ans1=max(ans1,(l[i][j]+1+r[i][j])*h[i][j]);
int t=min(l[i][j]+1+r[i][j],h[i][j]);
ans2=max(t*t,ans2);
}
printf("%d\n%d",ans2,ans1);
}