[BeiJing2010组队]次小生成树 Tree
时间限制: 1000 ms 内存限制: 524288 KB
题目描述
小 C 最近学了很多最小生成树的算法,Prim 算法、Kurskal 算法、消圈算法等等。 正当小 C 洋洋得意之时,小 P 又来泼小 C 冷水了。小 P 说,让小 C 求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说: 如果最小生成树选择的边集是 EM,严格次小生成树选择的边集是 ES,那么需要满足:(value(e) 表示边 e的权值)
∑e∈Emvalue(e)<∑e∈ESvalue(e)
∑
e
∈
E
m
v
a
l
u
e
(
e
)
<
∑
e
∈
E
S
v
a
l
u
e
(
e
)
这下小 C 蒙了,他找到了你,希望你帮他解决这个问题。
输入
第一行包含两个整数 N N 和,表示无向图的点数与边数。 接下来 M M 行,每行 3个数 y y 表示,点 x x 和点之间有一条边,边的权值为 z z 。
输出
包含一行,仅一个数,表示严格次小生成树的边权和。(数据保证必定存在严格次小生成树)
输入样例
5 6
1 2 1
1 3 2
2 4 3
3 5 4
3 4 3
4 5 6
输出样例
11
提示
数据中无向图无自环;
50% 的数据;
80% 的数据
N≤50000,M≤100000
N
≤
50
000
,
M
≤
100
000
;
100% 的数据
N≤100000,M≤300000
N
≤
100
000
,
M
≤
300
000
,边权值非负且不超过
109
10
9
。
解:
次小生成树的一般解法?
先建立最小生成树,枚举加入非树边,求环上最大值,然后减去这条边就是答案。由于我们不知道环上的最值是否和非树边相等,所以我们还需要维护一个次大值。
其实算法很好理解,这里有一个问题,笔者似乎无法解答。次大生成树似乎不满足kruskal的贪心性质?假如我们把非树边排序,加入最小边不一定是次小生成树。希望有人可以解答。
估计是我kruskal太菜了。
关于代码实现:维护次大值似乎没有什么好的方法,写得很麻烦。然后好久没有倍增了,倍增求还要特判 u u ,是不是 lca l c a 。
code:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
struct lxy{
int to,next,len,fg;
}eg[600005];
struct data{
int id,dis,fa,ppp;
bool operator < (const data &QAQ)const{
return dis>QAQ.dis;
}
}yyy;
int n,m,t,cnt=-1,head[100005],dep[100005];
long long ans,rans=0x7f7f7f7f7f7f7f7f;
int f[100005][18],s[100005][18],fa[100005][18];
bool vis[100005];
void add(int op,int ed,int len){
eg[++cnt].next=head[op];
eg[cnt].to=ed;
eg[cnt].len=len;
head[op]=cnt;
}
void prim(){
priority_queue <data> d;
yyy.id=1;yyy.dis=0;d.push(yyy);
while(!d.empty()){
data now=d.top();d.pop();ans+=now.dis;
vis[now.id]=1;fa[now.id][0]=now.fa;f[now.id][0]=now.dis;
dep[now.id]=dep[now.fa]+1;
if(now.id!=1) eg[now.ppp].fg=1,eg[now.ppp^1].fg=1;
for(int i=head[now.id];i!=-1;i=eg[i].next)
if(vis[eg[i].to]==0){
yyy.id=eg[i].to;yyy.dis=eg[i].len;yyy.fa=now.id;yyy.ppp=i;
d.push(yyy);
}
while(!d.empty()&&vis[d.top().id]==1) d.pop();
}
}
void woc(int x,int y,int p)
{
//cout<<x<<" "<<y<<endl;
int fi=0,si=0;
if(dep[x]<dep[y]) swap(x,y);
if(dep[x]!=dep[y]){
for(int i=17;i>=0;i--)
if(dep[fa[x][i]]>=dep[y]){
if(f[x][i]>fi) si=fi,fi=f[x][i];
t=fi;
if(f[x][i]!=t&&si<f[x][i]) si=f[x][i];
else if(s[x][i]!=t&&si<s[x][i]) si=s[x][i];
x=fa[x][i];
}
}
if(x!=y){
for(int i=17;i>=0;i--)
if(fa[x][i]!=fa[y][i]){
if(f[x][i]>fi) si=fi,fi=f[x][i];
t=fi;
if(f[x][i]!=t&&si<f[x][i]) si=f[x][i];
else if(s[x][i]!=t&&si<s[x][i]) si=s[x][i];
x=fa[x][i];
if(f[y][i]>fi) si=fi,fi=f[y][i];
t=fi;
if(f[y][i]!=t&&si<f[y][i]) si=f[y][i];
else if(s[y][i]!=t&&si<s[y][i]) si=s[y][i];
y=fa[y][i];
}
if(f[x][0]>fi) si=fi,fi=f[x][0];
t=fi;
if(f[x][0]!=t&&si<f[x][0]) si=f[x][0];
else if(s[x][0]!=t&&si<s[x][0]) si=s[x][0];
x=fa[x][0];
if(f[y][0]>fi) si=fi,fi=f[y][0];
t=fi;
if(f[y][0]!=t&&si<f[y][0]) si=f[y][0];
else if(s[y][0]!=t&&si<s[y][0]) si=s[y][0];
}
if(p==fi&&si!=-1) rans=min(rans,ans+p-si);
else if(p!=fi) rans=min(rans,ans+p-fi);
}
int main()
{
memset(f,-1,sizeof(f));
memset(s,-1,sizeof(s));
memset(head,-1,sizeof(head));
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
int a1,a2,a3;
scanf("%d%d%d",&a1,&a2,&a3);
add(a1,a2,a3);add(a2,a1,a3);
}
prim();
for(int i=1;i<=17;i++)
for(int j=1;j<=n;j++)
{
f[j][i]=max(f[j][i-1],f[fa[j][i-1]][i-1]);
t=f[j][i];
if(f[j][i-1]!=t&&f[j][i-1]>s[j][i]) s[j][i]=f[j][i-1];
else if(s[j][i-1]!=t&&s[j][i-1]>s[j][i]) s[j][i]=f[j][i-1];
if(f[fa[j][i-1]][i-1]!=t&&f[fa[j][i-1]][i-1]>s[j][i]) s[j][i]=f[fa[j][i-1]][i-1];
else if(s[fa[j][i-1]][i-1]!=t&&s[fa[j][i-1]][i-1]>s[j][i]) s[j][i]=s[fa[j][i-1]][i-1];
fa[j][i]=fa[fa[j][i-1]][i-1];
}
for(int i=1;i<=n;i++)
for(int j=head[i];j!=-1;j=eg[j].next){
if(eg[j].fg==1||(j&1)==1) continue;//减小复杂度,奇偶是相同的,所以只算奇数。
woc(i,eg[j].to,eg[j].len);
}
printf("%lld",rans);
}