传送门
一道比较综合的好题。
由于是求严格的次小生成树。
我们需要维护一条路径上的最小值和次小值。
其中最小值和次小值不能相同。
由于不喜欢倍增我选择了用树链剖分维护。
代码:
#include<bits/stdc++.h>
#define N 100005
#define M 300005
#define lc (p<<1)
#define rc (p<<1|1)
#define mid (T[p].l+T[p].r>>1)
#define ll long long
#define xx first
#define yy second
using namespace std;
inline ll read(){
ll ans=0;
char ch=getchar();
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
return ans;
}
int first[N],cnt=0,n,m,sizz=0,Fa[N],fa[N],hson[N],dep[N],siz[N],top[N],num[N],pred[N];
bool vis[M];
ll sum=0,ans=1e18,a[N];
struct edge{int v,next;ll w;}e[N<<1];
struct Edge{int u,v;ll w;}t[M];
struct Node{int l,r;ll mx,sx;}T[N<<2];
inline bool cmp(Edge a,Edge b){return a.w<b.w;}
inline int find(int x){return x==Fa[x]?Fa[x]:Fa[x]=find(Fa[x]);}
inline void add(int u,int v,ll w){e[++cnt].v=v,e[cnt].w=w,e[cnt].next=first[u],first[u]=cnt;}
inline void kruskal(){
int tot=0;
for(int i=1;i<=n;++i)Fa[i]=i;
sort(t+1,t+m+1,cmp);
for(int i=1;i<=m;++i){
if(tot==n-1)break;
int fx=find(t[i].u),fy=find(t[i].v);
if(fx!=fy)vis[i]=true,Fa[fx]=fy,sum+=t[i].w,++tot,add(t[i].u,t[i].v,t[i].w),add(t[i].v,t[i].u,t[i].w);
}
}
inline void dfs1(int p){
siz[p]=1;
for(int i=first[p];i;i=e[i].next){
int v=e[i].v;
if(v==fa[p])continue;
dep[v]=dep[p]+1,fa[v]=p,a[v]=e[i].w,dfs1(v),siz[p]+=siz[v];
if(siz[v]>siz[hson[p]])hson[p]=v;
}
}
inline void dfs2(int p,int tp){
top[p]=tp,pred[num[p]=++sizz]=p;
if(!hson[p])return;
dfs2(hson[p],tp);
for(int i=first[p];i;i=e[i].next){
int v=e[i].v;
if(v==fa[p]||v==hson[p])continue;
dfs2(v,v);
}
}
inline ll max(ll a,ll b){return a>b?a:b;}
inline void pushup(int p){
T[p].mx=max(T[lc].mx,T[rc].mx);
T[p].sx=max(T[p].mx==T[lc].mx?T[lc].sx:T[lc].mx,T[p].mx==T[rc].mx?T[rc].sx:T[rc].mx);
}
inline void build(int p,int l,int r){
T[p].l=l,T[p].r=r;
if(l==r){T[p].mx=a[pred[l]],T[p].sx=-1;return;}
build(lc,l,mid),build(rc,mid+1,r),pushup(p);
}
inline pair<ll,ll> query(int p,int ql,int qr){
if(T[p].r<ql||T[p].l>qr)return make_pair(0,-1);
if(ql<=T[p].l&&T[p].r<=qr)return make_pair(T[p].mx,T[p].sx);
if(qr<=mid)return query(lc,ql,qr);
if(ql>mid)return query(rc,ql,qr);
pair<ll,ll>ans1=query(lc,ql,mid),ans2=query(rc,mid+1,qr),ans;
ans.xx=max(ans1.xx,ans2.xx);
ans.yy=max(ans1.xx==ans.xx?ans1.yy:ans1.xx,ans2.xx==ans.xx?ans2.yy:ans2.xx);
return ans;
}
inline pair<ll,ll> ask(int x,int y){
pair<ll,ll>ret=make_pair(0,-1),tmp1,tmp2;
while(top[x]!=top[y]){
if(dep[top[x]]<dep[top[y]])x^=y,y^=x,x^=y;
tmp1=query(1,num[top[x]],num[x]),tmp2=ret;
ret.xx=max(tmp1.xx,tmp2.xx);
ret.yy=max(ret.xx==tmp1.xx?tmp1.yy:tmp1.xx,ret.xx==tmp2.xx?tmp2.yy:tmp2.xx);
x=fa[top[x]];
}
if(dep[x]<dep[y])x^=y,y^=x,x^=y;
tmp1=query(1,num[y]+1,num[x]),tmp2=ret;
ret.xx=max(tmp1.xx,tmp2.xx);
ret.yy=max(ret.xx==tmp1.xx?tmp1.yy:tmp1.xx,ret.xx==tmp2.xx?tmp2.yy:tmp2.xx);
return ret;
}
int main(){
n=read(),m=read();
for(int i=1;i<=m;++i)t[i].u=read(),t[i].v=read(),t[i].w=read();
kruskal(),dfs1(1),dfs2(1,1),build(1,1,n);
for(int i=1;i<=m;++i){
if(vis[i])continue;
int u=t[i].u,v=t[i].v;
ll w=t[i].w;
pair<ll,ll>tmp=ask(u,v);
if(w!=tmp.xx)ans=min(ans,sum-tmp.xx+w);
else if(tmp.yy!=-1)ans=min(ans,sum-tmp.yy+w);
}
cout<<ans;
return 0;
}