P2754 [CTSC1999]家园(网络流)

[CTSC1999]家园

题目描述

由于人类对自然资源的消耗,人们意识到大约在 2300 年之后,地球就不能再居住了。于是在月球上建立了新的绿地,以便在需要时移民。令人意想不到的是,2177 年冬由于未知的原因,地球环境发生了连锁崩溃,人类必须在最短的时间内迁往月球。

现有 n n 个太空站位于地球与月球之间,且有 m 艘公共交通太空船在其间来回穿梭。每个太空站可容纳无限多的人,而每艘太空船 i i 只可容纳 H[i]个人。每艘太空船将周期性地停靠一系列的太空站,例如:(1,3,4)表示该太空船将周期性地停靠太空站 134134134…。每一艘太空船从一个太空站驶往任一太空站耗时均为 1。人们只能在太空船停靠太空站(或月球、地球)时上、下船。

初始时所有人全在地球上,太空船全在初始站。试设计一个算法,找出让所有人尽快地全部转移到月球上的运输方案。

对于给定的太空船的信息,找到让所有人尽快地全部转移到月球上的运输方案。

输入格式:

第 1 行有 3 个正整数 n n (太空站个数),m(太空船个数)和 k k (需要运送的地球上的人的个数)。其中 n<=13m<=20,1<=k<=50

接下来的 m m 行给出太空船的信息。第 i+1 行说明太空船 pi p i 。第 1 个数表示 pi p i 可容纳的人数 Hpi H p i ;第 2 个数表示 pi p i 一个周期停靠的太空站个数 r r 1<=r<=n+2;随后 r r 个数是停靠的太空站的编号(Si1,Si2,,Sir),地球用 0 表示,月球用-1 表示。

时刻 0 时,所有太空船都在初始站,然后开始运行。在时刻 1,2,3…等正点时刻各艘太空船停靠相应的太空站。人只有在 0,1,2…等正点时刻才能上下太空船。

输出格式:

程序运行结束时,将全部人员安全转移所需的时间输出。如果问题无解,则输出 0。

输入样例#1:
2 2 1
1 3 0 1 2
1 3 1 2 -1
输出样例#1:
5








解:

求最少时间的网络流。
也是一个模板。
我们想到拆点,然后这一天有飞船经过就连一条边。每一天向下一天连边(可以停留)。所有时间的地球向源点连边,所有时间的月亮向汇点连边。我们按时间一层一层加边,知道有一层跑过人数,我们输出这个时间。
这是很好理解的。这里讲一讲问什么要拆点?
这里写图片描述
我们从右边走到左边,右边只来了一艘飞船,而左边已经来回几趟了,如果不拆,这来回几趟都可以载人,实际上只有最后一趟才能载人。

至于我们的二分做法,我们其实是不如从小到大。因为二分要重构图而且从小到大,我们可以直接在残量网络上増广。二分又难写又慢。

code:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define inf 0x3f3f3f3f
using namespace std;
struct lxy{
    int to,next,flow;
}eg[100005];

int head[20005],layer[20005],cnt=-1,n,m,k,s,t,tim;
int fa[15],num[25];
int data[25][25];
int ans;

int findit(int x){
    if(fa[x]==x) return x;
    return fa[x]=findit(fa[x]);
}

void add(int op,int ed,int flow){
    eg[++cnt].next=head[op];
    eg[cnt].to=ed;
    eg[cnt].flow=flow;
    head[op]=cnt;
}

bool bfs(){
    memset(layer,0,sizeof(layer));
    queue <int> d;
    d.push(s);layer[s]=1;
    while(!d.empty()){
        int now=d.front();d.pop();
        for(int i=head[now];i!=-1;i=eg[i].next)
          if(eg[i].flow!=0&&layer[eg[i].to]==0){
            layer[eg[i].to]=layer[now]+1;
            d.push(eg[i].to);
          }
    }
    return layer[t];
}

int dfs(int u,int a){
    if(u==t||a==0) return a;
    int f,flow=0;
    for(int i=head[u];i!=-1;i=eg[i].next)
      if(eg[i].flow!=0&&layer[u]+1==layer[eg[i].to]){
        f=dfs(eg[i].to,min(a,eg[i].flow));
        flow+=f;a-=f;
        eg[i].flow-=f;eg[i^1].flow+=f;
        if(a==0) break;
      }
    return flow;
}

int dinic()
{
    int ret=0;
    while(bfs()) ret+=dfs(s,inf);
    return ret;
}

int main()
{
    memset(head,-1,sizeof(head));
    scanf("%d%d%d",&n,&m,&k);
    s=0,t=20001;
    for(int i=0;i<=n+2;i++) fa[i]=i;
    for(int i=1;i<=m;i++){
        scanf("%d%d",&num[i],&data[i][0]);
        for(int j=1;j<=data[i][0];j++){
            scanf("%d",&data[i][j]);
            if(++data[i][j]==0) data[i][j]=n+2;
        }
    }
    for(int i=1;i<=m;i++)
      for(int j=1;j<data[i][0];j++){
        int x=findit(data[i][j]),y=findit(data[i][j+1]);
        if(x!=y) fa[x]=y;
      }
    if(findit(1)!=findit(n+2)){
        printf("0");
        return 0;
    }
    for(tim=1;;tim++){
      for(int i=1;i<=n+2;i++)
        add((tim-1)*(n+2)+i,tim*(n+2)+i,inf),add(tim*(n+2)+i,(tim-1)*(n+2)+i,0);
      for(int i=1;i<=m;i++){
        int x=tim%data[i][0];
        if(x==0){
          add((tim-1)*(n+2)+data[i][data[i][0]],tim*(n+2)+data[i][1],num[i]);
          add(tim*(n+2)+data[i][1],(tim-1)*(n+2)+data[i][data[i][0]],0);
        }
        else{
          add((tim-1)*(n+2)+data[i][x],tim*(n+2)+data[i][x+1],num[i]);
          add(tim*(n+2)+data[i][x+1],(tim-1)*(n+2)+data[i][x],0);
        }
      }
      add(s,(tim-1)*(n+2)+1,inf),add((tim-1)*(n+2)+1,s,0);
      add(t,(tim)*(n+2)+n+2,0),add((tim)*(n+2)+n+2,t,inf);
      ans+=dinic();
      if(ans>=k) break;
    }
    printf("%d",tim);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值