[CTSC1999]家园
题目描述
由于人类对自然资源的消耗,人们意识到大约在 2300 年之后,地球就不能再居住了。于是在月球上建立了新的绿地,以便在需要时移民。令人意想不到的是,2177 年冬由于未知的原因,地球环境发生了连锁崩溃,人类必须在最短的时间内迁往月球。
现有 n n 个太空站位于地球与月球之间,且有 艘公共交通太空船在其间来回穿梭。每个太空站可容纳无限多的人,而每艘太空船 i i 只可容纳 个人。每艘太空船将周期性地停靠一系列的太空站,例如:(1,3,4)表示该太空船将周期性地停靠太空站 134134134…。每一艘太空船从一个太空站驶往任一太空站耗时均为 1。人们只能在太空船停靠太空站(或月球、地球)时上、下船。
初始时所有人全在地球上,太空船全在初始站。试设计一个算法,找出让所有人尽快地全部转移到月球上的运输方案。
对于给定的太空船的信息,找到让所有人尽快地全部转移到月球上的运输方案。
输入格式:
第 1 行有 3 个正整数 n n (太空站个数),(太空船个数)和 k k (需要运送的地球上的人的个数)。其中 。
接下来的 m m 行给出太空船的信息。第 行说明太空船 pi p i 。第 1 个数表示 pi p i 可容纳的人数 Hpi H p i ;第 2 个数表示 pi p i 一个周期停靠的太空站个数 r r ,;随后 r r 个数是停靠的太空站的编号(),地球用 0 表示,月球用-1 表示。
时刻 0 时,所有太空船都在初始站,然后开始运行。在时刻 1,2,3…等正点时刻各艘太空船停靠相应的太空站。人只有在 0,1,2…等正点时刻才能上下太空船。
输出格式:
程序运行结束时,将全部人员安全转移所需的时间输出。如果问题无解,则输出 0。
输入样例#1:
2 2 1
1 3 0 1 2
1 3 1 2 -1
输出样例#1:
5
解:
求最少时间的网络流。
也是一个模板。
我们想到拆点,然后这一天有飞船经过就连一条边。每一天向下一天连边(可以停留)。所有时间的地球向源点连边,所有时间的月亮向汇点连边。我们按时间一层一层加边,知道有一层跑过人数,我们输出这个时间。
这是很好理解的。这里讲一讲问什么要拆点?
我们从右边走到左边,右边只来了一艘飞船,而左边已经来回几趟了,如果不拆,这来回几趟都可以载人,实际上只有最后一趟才能载人。
至于我们的二分做法,我们其实是不如从小到大。因为二分要重构图而且从小到大,我们可以直接在残量网络上増广。二分又难写又慢。
code:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define inf 0x3f3f3f3f
using namespace std;
struct lxy{
int to,next,flow;
}eg[100005];
int head[20005],layer[20005],cnt=-1,n,m,k,s,t,tim;
int fa[15],num[25];
int data[25][25];
int ans;
int findit(int x){
if(fa[x]==x) return x;
return fa[x]=findit(fa[x]);
}
void add(int op,int ed,int flow){
eg[++cnt].next=head[op];
eg[cnt].to=ed;
eg[cnt].flow=flow;
head[op]=cnt;
}
bool bfs(){
memset(layer,0,sizeof(layer));
queue <int> d;
d.push(s);layer[s]=1;
while(!d.empty()){
int now=d.front();d.pop();
for(int i=head[now];i!=-1;i=eg[i].next)
if(eg[i].flow!=0&&layer[eg[i].to]==0){
layer[eg[i].to]=layer[now]+1;
d.push(eg[i].to);
}
}
return layer[t];
}
int dfs(int u,int a){
if(u==t||a==0) return a;
int f,flow=0;
for(int i=head[u];i!=-1;i=eg[i].next)
if(eg[i].flow!=0&&layer[u]+1==layer[eg[i].to]){
f=dfs(eg[i].to,min(a,eg[i].flow));
flow+=f;a-=f;
eg[i].flow-=f;eg[i^1].flow+=f;
if(a==0) break;
}
return flow;
}
int dinic()
{
int ret=0;
while(bfs()) ret+=dfs(s,inf);
return ret;
}
int main()
{
memset(head,-1,sizeof(head));
scanf("%d%d%d",&n,&m,&k);
s=0,t=20001;
for(int i=0;i<=n+2;i++) fa[i]=i;
for(int i=1;i<=m;i++){
scanf("%d%d",&num[i],&data[i][0]);
for(int j=1;j<=data[i][0];j++){
scanf("%d",&data[i][j]);
if(++data[i][j]==0) data[i][j]=n+2;
}
}
for(int i=1;i<=m;i++)
for(int j=1;j<data[i][0];j++){
int x=findit(data[i][j]),y=findit(data[i][j+1]);
if(x!=y) fa[x]=y;
}
if(findit(1)!=findit(n+2)){
printf("0");
return 0;
}
for(tim=1;;tim++){
for(int i=1;i<=n+2;i++)
add((tim-1)*(n+2)+i,tim*(n+2)+i,inf),add(tim*(n+2)+i,(tim-1)*(n+2)+i,0);
for(int i=1;i<=m;i++){
int x=tim%data[i][0];
if(x==0){
add((tim-1)*(n+2)+data[i][data[i][0]],tim*(n+2)+data[i][1],num[i]);
add(tim*(n+2)+data[i][1],(tim-1)*(n+2)+data[i][data[i][0]],0);
}
else{
add((tim-1)*(n+2)+data[i][x],tim*(n+2)+data[i][x+1],num[i]);
add(tim*(n+2)+data[i][x+1],(tim-1)*(n+2)+data[i][x],0);
}
}
add(s,(tim-1)*(n+2)+1,inf),add((tim-1)*(n+2)+1,s,0);
add(t,(tim)*(n+2)+n+2,0),add((tim)*(n+2)+n+2,t,inf);
ans+=dinic();
if(ans>=k) break;
}
printf("%d",tim);
}