洛谷传送门
题目描述
由于人类对自然资源的消耗,人们意识到大约在 2300 年之后,地球就不能再居住了。于是在月球上建立了新的绿地,以便在需要时移民。令人意想不到的是,2177 年冬由于未知的原因,地球环境发生了连锁崩溃,人类必须在最短的时间内迁往月球。
现有
n
n
个太空站位于地球与月球之间,且有 艘公共交通太空船在其间来回穿梭。每个太空站可容纳无限多的人,而每艘太空船
i
i
只可容纳 个人。每艘太空船将周期性地停靠一系列的太空站,例如:
(1,3,4)
(
1
,
3
,
4
)
表示该太空船将周期性地停靠太空站 134134134…
。每一艘太空船从一个太空站驶往任一太空站耗时均为
1
1
。人们只能在太空船停靠太空站(或月球、地球)时上、下船。
初始时所有人全在地球上,太空船全在初始站。试设计一个算法,找出让所有人尽快地全部转移到月球上的运输方案。
对于给定的太空船的信息,找到让所有人尽快地全部转移到月球上的运输方案。
输入输出格式
输入格式:
第 行有 3 3 个正整数 (太空站个数), m m (太空船个数)和 (需要运送的地球上的人的个数)。其中 n≤13,m≤20,1≤k≤50 n ≤ 13 , m ≤ 20 , 1 ≤ k ≤ 50 。
接下来的 m m 行给出太空船的信息。第 行说明太空船 pi p i 。第 1 1 个数表示 可容纳的人数 Hpi H p i ;第 2 2 个数表示 一个周期停靠的太空站个数 r r ,;随后 r r 个数是停靠的太空站的编号(),地球用 0 0 表示,月球用 表示。
时刻 0 0 时,所有太空船都在初始站,然后开始运行。在时刻 , 2 2 ,…等正点时刻各艘太空船停靠相应的太空站。人只有在 0,1,2 0 , 1 , 2 …等正点时刻才能上下太空船。
输出格式:
程序运行结束时,将全部人员安全转移所需的时间输出。如果问题
无解,则输出 0 0 。
输入输出样例
输入样例#1:
2 2 1
1 3 0 1 2
1 3 1 2 -1
输出样例#1:
5
解题分析
网络流的经典建图方法之一。
考虑到很小, 我们可以对于每个时刻建出 n n 个点, 在上面跑最大流。
具体而言, 我们从上个时刻的每个飞船的停靠点向这一时刻的飞船的对应停靠点连容量为飞船容量的边, 表示这一时刻可以转移的人。 同时, 上一时刻的每个空间站向下一时刻对应星球、空间站连容量为的边, 表示这些人可以停留在空间站上。 最后, 源点 S S 向每个时刻的地球连容量为的边, 表示地球上需转移的人, 每个时刻的月球向汇点 T T 连容量为的边, 表示这些人成功转移。
接下来我们可以二分时间暴力建图计算, 但也可以直接利用上次计算的残量网络加边建图, 这样总的算起来等于只跑了一边网络流, 更快。
至于判无解, 直接用并查集或当扩容出某个大小时仍无解便可判定。
代码如下:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cctype>
#include <cstdlib>
#include <queue>
#include <algorithm>
#define R register
#define IN inline
#define gc getchar()
#define W while
#define MX 100050
#define S 0
#define T 2000
#define Earth 18
#define Moon 19
#define INF 100000000
#define base 20
bool neg;
template <class TT>
IN void in(TT &x)
{
x = 0; R char c = gc;
for(; !isdigit(c); c = gc) if(c == '-') neg = true;
W (isdigit(c))
x = (x << 1) + (x << 3) + c - 48, c = gc;
if(neg) neg = false, x = -x;
}
int n, m, k, tot, cnt = -1;
int head[2005], layer[2005];
std::queue <int> q;
struct Edge {int to, fl, nex;} edge[MX << 1];
struct Ship {int num, cap, sta[105];} ship[105];
IN void add(R int from, R int to, R int fl)
{
edge[++cnt] = {to, fl, head[from]}, head[from] = cnt;
edge[++cnt] = {from, 0, head[to]}, head[to] = cnt;
}
IN bool BFS()
{
std::memset(layer, 0, sizeof(layer));
layer[S] = 1; q.push(S);
R int now;
W (!q.empty())
{
now = q.front(); q.pop();
for (R int i = head[now]; ~i; i = edge[i].nex)
{
if(edge[i].fl && !layer[edge[i].to])
layer[edge[i].to] = layer[now] + 1, q.push(edge[i].to);
}
}
return layer[T];
}
int DFS(R int now, R int val)
{
if(now == T) return val;
int lef = val, buf;
for (R int i = head[now]; ~i; i = edge[i].nex)
{
if(edge[i].fl && layer[edge[i].to] == layer[now] + 1)
{
buf = DFS(edge[i].to, std::min(lef, edge[i].fl));
if(!buf) continue;
lef -= buf; edge[i].fl -= buf, edge[i ^ 1].fl += buf;
if(lef <= 0) return val;
}
}
return val - lef;
}
int Dinic()
{
int ret = 0;
W (BFS()) ret += DFS(S, INF);
return ret;
}
int main(void)
{
int mul, pre;
std::memset(head, -1, sizeof(head));
in(n), in(m), in(k);
for (R int i = 1; i <= m; ++i)
{
in(ship[i].cap), in(ship[i].num);
for (R int j = 0; j < ship[i].num; ++j)
{
in(ship[i].sta[j]);
if(!ship[i].sta[j]) ship[i].sta[j] = Earth;
if(ship[i].sta[j] < 0) ship[i].sta[j] = Moon;
}
}
add(S, Earth, INF); add(Moon, T, INF);
for (int TT = 1; TT <= 1000; ++TT)
{
mul = TT * base, pre = mul - base;
add(S, Earth + mul, INF); add(Moon + mul, T, INF);
for (R int i = 1; i <= m; ++i)
add(pre + ship[i].sta[(TT - 1) % ship[i].num], mul + ship[i].sta[TT % ship[i].num], ship[i].cap);
for (R int i = 1; i <= n; ++i) add(pre + i, mul + i, INF);
tot += Dinic();
if(tot >= k) return printf("%d", TT), 0;
}
puts("0");
}