回归分析
公式太多编辑器太卡,重新开了一贴。
前言
上会说到,平均值和离差的定义,现在继续深入对公式进行分析。
回归特性度量
符号定义:
全部
xi
x
i
的离差平方和记为
Lxx
L
x
x
:
同样可以定义
yi的离差平方和Lyy
y
i
的
离
差
平
方
和
L
y
y
:
Lyy=∑n−1i=0(yi−y¯¯¯)2
L
y
y
=
∑
i
=
0
n
−
1
(
y
i
−
y
¯
)
2
记 lxy l x y 为全部 xi x i 的离差与 yi y i 的离差乘积的总和:
Lxy=∑n−1i=0xiyi−n∗x¯¯¯y¯¯¯ L x y = ∑ i = 0 n − 1 x i y i − n ∗ x ¯ y ¯ ;
因此:
β=Lxy/Lxx
β
=
L
x
y
/
L
x
x
α=y¯¯¯−b∗x¯¯¯
α
=
y
¯
−
b
∗
x
¯
为了判定两个变量间线性关系的优劣程序,引入一个指标R,R称为线性相关系数,其定义为:
R=lxyLxxLyy√
R
=
l
x
y
L
x
x
L
y
y
0≤abs(R)≤1
0
≤
a
b
s
(
R
)
≤
1
R值越接近1,表示线性关系越好。
R大于0,则是正相关,反之则是负相关。