统计学:回归分析(2)

回归分析

公式太多编辑器太卡,重新开了一贴。


前言

上会说到,平均值和离差的定义,现在继续深入对公式进行分析。


回归特性度量

符号定义:
全部 xi x i 的离差平方和记为 Lxx L x x :

lxx=i=0n1x2i1n(i=0n1xi)2 l x x = ∑ i = 0 n − 1 x i 2 − 1 n ( ∑ i = 0 n − 1 x i ) 2

同样可以定义 yiLyy y i 的 离 差 平 方 和 L y y :
Lyy=n1i=0(yiy¯¯¯)2 L y y = ∑ i = 0 n − 1 ( y i − y ¯ ) 2

lxy l x y 为全部 xi x i 的离差与 yi y i 的离差乘积的总和:

Lxy=n1i=0xiyinx¯¯¯y¯¯¯ L x y = ∑ i = 0 n − 1 x i y i − n ∗ x ¯ y ¯ ;

因此:
β=Lxy/Lxx β = L x y / L x x
α=y¯¯¯bx¯¯¯ α = y ¯ − b ∗ x ¯


为了判定两个变量间线性关系的优劣程序,引入一个指标R,R称为线性相关系数,其定义为:
R=lxyLxxLyy R = l x y L x x L y y 0abs(R)1 0 ≤ a b s ( R ) ≤ 1

R值越接近1,表示线性关系越好。
R大于0,则是正相关,反之则是负相关。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值