陈老师的多校联合 20140809 C题

https://i-blog.csdnimg.cn/blog_migrate/5937300f789dbba7270dabcc70435832.pngcontest/view.action?cid=51408#problem/C

Description

Download as PDF

You live in the universe X where all the physical laws and constants are different from ours. For example all of their objects are N-dimensional. The living beings of the universe X want to build an N-dimensional monument. We can consider this N dimensional monument as an N-dimensional hyper-box, which can be divided into some N dimensional hypercells. The length of each of the sides of a hyper-cell is one. They will use some N-dimensional bricks (or hyper-bricks) to build this monument. But the length of each of the Nsides of a brick cannot be anything other than fibonacci numbers. A fibonacci sequence is given below:

1, 2, 3, 5, 8, 13, 21...

\epsfbox{p4855.eps}

As you can see each value starting from 3 is the sum of previous 2 values. So for N = 3 they can use bricks of sizes (2,5,3), (5,2,2) etc. but they cannot use bricks of size (1,2,4) because the length 4 is not a fibonacci number. Now given the length of each of the dimension of the monument determine the minimum number of hyper-bricks required to build the monument. No two hyper-bricks should intersect with each other or should not go out of the hyper-box region of the monument. Also none of the hyper-cells of the monument should be empty.

Input

First line of the input file is an integer T(1$ \le$T$ \le$100) which denotes the number of test cases. Each test case starts with a line containingN(1$ \le$N$ \le$15) that denotes the dimension of the monument and the bricks. Next line contains N integers the length in each dimension. Each of these integers will be between 1 and 2000000000 inclusive.

Output

For each test case output contains a line in the format Casex:M where x is the case number (starting from 1) and M is the minimum number of hyper-bricks required to build the monument.

Sample Input

2 
2 
4 4 
3 
5 7 8

Sample Output

Case 1: 4 
Case 2: 2
题目大意:n维几何体,判断至少用多少n维且各维边长都为Fibonacci数的砖。

解题思路:求出n个数每个数至少是几个个Fibonacci数(可以重复)的和,然后这样把n个数的统计数乘起来就是答案。

#include <iostream>
#include <cstring>
#include <set>
#include <cstdio>
using namespace std;

typedef long long LL;

const int maxn =55;

LL f[maxn],x[20];

set<LL>fib;
set<LL>::iterator it;
void init()
{
    f[0]=1;
    f[1]=1;
    fib.insert(1);
    for(int i=2; i<maxn; i++)
    {
        f[i]=f[i-1]+f[i-2];
        fib.insert(f[i]);
    }
}

int main()
{
    int n,cas=1,t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        for(int i=0; i<n; i++)
            scanf("%lld",&x[i]);
        init();
        int i,j;
        long long ans=1;
        int cnt=1;
        for(i=0; i<n; i++)
        {
            //每个x[i]至少由几个斐波那契数组成(可以重复利用一个数多次)
            if(fib.find(x[i])==fib.end())
            {
                cnt=1;
                int s=x[i];
                while(fib.find(s)==fib.end())
                {
                    int t=lower_bound(f,f+55,s)-f;
                    s=s-f[t-1];
                    cnt++;
                }
                ans*=cnt;
            }
        }
        printf("Case %d: %lld\n",cas++,ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值