2021牛客多校4(CFIJ)题解

这篇博客探讨了算法竞赛中的两种策略:一是通过并查集优化删除操作以判断胜负;二是通过树状数组求解逆序对最小化问题。此外,还介绍了如何构造满足特定条件的字符串序列,并讲解了寻找二维数组最大平均值的二分查找方法。
摘要由CSDN通过智能技术生成

F Just a joke

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
题意:就是有两个操作,可以删除一条表或者删除一个联通分量。
思路:很神奇,我们当时比赛时用并查集来判断感觉水过去了,跟官方题解完全不沾边又有点差不多的意思
看一下这个神奇的办法,就是判断有几个联通分量,然后又几个点,点的个数+联通分量的个数,然后判断奇偶。
官方题解是不管哪个操作,点加边的个数都是减掉奇数个,然后我们可以判断奇偶来看谁赢了。
代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1100;
ll f[N];
ll sum=0;
ll ffind(int k)
{
    if(f[k]!=k) f[k]=ffind(f[k]);
    return f[k];
}
int main ()
{
    ll n,m;cin>>n>>m;
    for(int i=1;i<=n;i++)
    {
        f[i]=i;
    }
    for(int i=1;i<=m;i++)
    {
        ll a,b;cin>>a>>b;
        ll s1=ffind(a);ll s2=ffind(b);
        if(s1==s2)
        {
            sum++;
            //f[y]=x;
        }
        else
        {
            f[s2]=s1;
        }
    }
    ll ans=0;
    for(int i=1;i<=n;i++)
    {
        if(f[i]==i){
            ans++;
        }
    }
    ans=ans+sum;
    if(ans%2==0)
        cout<<"Bob"<<endl;
    else
        cout<<"Alice"<<endl;
    return 0;
}
/*
#include<bits/stdc++.h>
using namespace std;
int main()
{
    int n,m;
    cin>>n>>m;
    int x,y;
    for(int i=0;i<m;i++){
        cin>>x>>y;
    }
    if((n+m)&1) puts("Alice");
    else puts("Bob");

}
*/

I Inverse Pair

在这里插入图片描述在这里插入图片描述
题意:
就是给你一个a数组,然后构造有个只有0/1的b数组,然后是ai+bi=wi,wi数组的逆序对个数最小。输出逆序对个数
思路:因为b数组只有1才能改变a数组的逆序对个数,然后+1,其实就是看它前面是否已经出现了ai+1这个数字看,出现了,我们就把当前位改为ai+1,可以最大化的减少逆序对,然后树状数组求逆序对个数就可以了。
代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+10;
ll a[N];ll n;
map<ll,ll>mp;
ll tree[N];
ll lowbit(ll i)
{
    return i&-i;
}
void add(ll x)
{
    while(x<=n){
        tree[x]++;
        x+=lowbit(x);
    }
}
ll sum(ll x)
{
    ll ans=0;
    while(x!=0)
    {
        ans+=tree[x];
        x-=lowbit(x);
    }
    return ans;
}
int main ()
{
    cin>>n;
    for(ll i=1;i<=n;i++)
    {
        cin>>a[i];
    }
    mp[a[1]]=1;
    for(ll i=2;i<=n;i++)
    {
        if(mp[a[i]+1]==1)
        {
            a[i]+=1;
            mp[a[i]+1]=1;
        }
        else
        {
            mp[a[i]]=1;
        }
    }
    ll ans=0;
    for(ll i=1;i<=n;i++)
    {
        add(a[i]);
       // cout<<sum(a[i])<<endl;
        ans+=i-sum(a[i]);
    }
    cout<<ans<<endl;
    return 0;
}

C-LCS

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

题意:就是来构造三个字符串s1,s2,s3,然后满足s1和s2的最长公共子序列(lcs)=a,同理s2和s3的lcs=b,s1和s3的lcs=c。
思路:我当时被这三个字符串的长度给懵了,就是如果lcs构造完但是长度>n了怎么办,但发现这个问题没事 思路就是用a-g来就可以了,这三个共有的都用a,s1和s2剩余不一样的个数用b来补,同理s2和s3的用c,s1和s3的用d来,剩余的这三个都不一样,s1用e补,s2用f补,s3用g补,粘队友的代码了,我太菜了

#include<bits/stdc++.h>
using namespace std;
const int N=6005;
char a[N];
char b[N];
char c[N];
int main()
{
    int s1,s2,s3,n;
    cin>>s1>>s2>>s3>>n;
    int minn;
    minn=min(s1,min(s2,s3));
    for(int i=1;i<=minn;i++)
    {
        a[i]=b[i]=c[i]='a';
    }
    s1-=minn;s2-=minn;s3-=minn;
    int la=minn,lb=minn,lc=minn;
    if(s1!=0)
    {
        for(int i=1;i<=s1;i++)
        {

            a[++la]=b[++lb]='b';
        }

    }
    if(s2!=0)
    {
        for(int i=1;i<=s2;i++)
        {
            b[++lb]=c[++lc]='c';
        }
    }
    if(s3!=0)
    {
        for(int i=1;i<=s3;i++)
        {
            a[++la]=c[++lc]='d';
        }
    }
    if(la<=n&&lb<=n&&lc<=n)
    {
        for(int i=1;i<=n;i++)
        {
            if(i<=la) cout<<a[i];
            else cout<<'g';
        }
        cout<<endl;
        for(int i=1;i<=n;i++)
        {
            if(i<=lb) cout<<b[i];
            else cout<<'e';
        }
        cout<<endl;
        for(int i=1;i<=n;i++)
        {
            if(i<=lc) cout<<c[i];
            else cout<<'f';
        }
        cout<<endl;
    }
    else cout<<"NO"<<endl;
    return 0;
}

J-Average

在这里插入图片描述
在这里插入图片描述
题意:就是有a,b两个数组,w数组是ab数组之和,就是求w二维数组的子数组最大的平均值是多少,a的子数组长度大于等于x,b的子数组长度大于等于y。
思路:我自己想的费劲还是菜 ,这题是一个二分分治,二分答案,然后二分判断时就判断这个数前面比平均值大的和,然后从区间的后端点开始模拟,找出前缀和最小的,然后让你要求的那个区间最大值,然后判断你的区间比平均值大的部分,如果大于0的话,就可以继续向右找最大的了,不为0的话,就向右找
代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e5+7;
double a[N],b[N];
double sum1[N],sum2[N];
ll n,m,x,y;
bool check1(double mid)
{
    for(int i=1; i<=n; i++)
    {
        sum1[i]=sum1[i-1]+(a[i]-mid);
    }
    double minn=0x3f3f3f3f;
    for(int i=x; i<=n; i++)
    {
        minn=min(minn,sum1[i-x]);
        if(sum1[i]-minn>=0) return true;
    }
    return false;
}
bool check2(double mid)
{
    for(int i=1; i<=m; i++)
    {
        sum2[i]=sum2[i-1]+(b[i]-mid);
    }
    double minn=0x3f3f3f3f;
    for(int i=y; i<=m; i++)
    {
        minn=min(minn,sum2[i-y]);
        if(sum2[i]-minn>=0) return true;
    }
    return false;
}
int main ()
{
    //ios::sync_with_stdio(false);
    //cin.tie(0);
    //cout.tie(0);

    cin>>n>>m>>x>>y;
    for(int i=1; i<=n; i++)
    {
        cin>>a[i];
    }
    for(int i=1; i<=m; i++)
    {
        cin>>b[i];
    }
    ll t=100;
    double l=0,r=1e5;
    double ans1=0,ans2=0;
    while(t--)
    {

            double mid=(l+r)/2;
            if(check1(mid))
            {
                ans1=mid;
                l=mid+1;
            }
            else
            {
                r=mid-1;
            }

    }
    t=100;

    l=0,r=1e5;
    while(t--)
    {


            double mid=(l+r)/2;
            if(check2(mid))
            {
                ans2=mid;
                l=mid+1;
            }
            else
            {
                r=mid-1;
            }

    }
    printf("%.10f\n",ans1+ans2);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值