算法学习:插值型求积公式

本文深入探讨了插值型求积公式,重点讲解了牛顿-柯斯特求积公式及其推导,包括梯形公式和辛普森积分。此外,还介绍了辛普森积分在立体几何中的应用,并讨论了自适应辛普森积分算法,用于处理大数据范围内的积分问题。
摘要由CSDN通过智能技术生成

算法学习:插值型求积公式

牛顿-柯斯特(Newton-Cotes)求积公式

定义

牛顿-柯斯特(Newton-Cotes)求积公式是插值型求积公式特殊形式
在插值求积公式

baf(x)dxbaP(x)dx=k=0nAkf(xk) ∫ a b f ( x ) d x ≈ ∫ a b P ( x ) d x = ∑ k = 0 n A k f ( x k )

中所取节点是等距时称为牛顿-柯斯特公式
其中插值多项式

P(x)=k=0nk(x)f(xk) P ( x ) = ∑ k = 0 n ℓ k ( x ) f ( x k )

求积系数

Ak=bak(x)dx A k = ∫ a b ℓ k ( x ) d x

这里 k(x) ℓ k ( x ) 指的是插值基函数,即有

Ak=bak(x)dx=baj=0,jknxxjxkxjdx A k = ∫ a b ℓ k ( x ) d x = ∫ a b ∏ j = 0 , j ≠ k n x − x j x k − x j d x

推导

[a,b] [ a , b ] 区间内设置等距的插值基点 a=x0<x1<xn=b a = x 0 < x 1 ⋯ < x n = b ,设节点步长为 h=ban,xk=a+kh,k{ 0,1,,n} h = b − a n , x k = a + k h , k ∈ { 0 , 1 , ⋯ , n }
积分作变量替换 x=a+th x = a + t h
xkxj=(kj)h,xxj=(tj)h,dx=hdt x k − x j = ( k − j ) h , x − x j = ( t − j ) h , d x = h d t
(xkx0)(xkxk1)(xkxk+1)(xkx

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值