思路:这个就是01背包问题差不多。先按持续时间排序。在dfs 这样想 第一场排队 要还是不要,第二场要还是不要,一直到最后一场求出最优解。
毕业bg
例如有4场bg:
第1场快乐度为5,持续1小时,发起人必须在1小时后离开;
第2场快乐度为10,持续2小时,发起人必须在3小时后离开;
第3场快乐度为6,持续1小时,发起人必须在2小时后离开;
第4场快乐度为3,持续1小时,发起人必须在1小时后离开。
则获得最大快乐度的安排应该是:先开始第3场,获得快乐度6,在第1小时结束,发起人也来得及离开;再开始第2场,获得快乐度10,在第3小时结束,发起人正好来得及离开。此时已经无法再安排其他的bg,因为发起人都已经离开了学校。因此获得的最大快乐度为16。
注意bg必须在发起人离开前结束,你不可以中途离开一场bg,也不可以中途加入一场bg。
又因为你的人缘太好,可能有多达30个团体bg你,所以你需要写个程序来解决这个时间安排的问题。
h l t
其中 h 是快乐度,l是持续时间(小时),t是发起人离校时间。数据保证l不大于t,因为若发起人必须在t小时后离开,bg必须在主人离开前结束。
当N为负数时输入结束。
3 6 3 3 3 2 2 4 1 3 4 5 1 1 10 2 3 6 1 2 3 1 1 -1
7 16
#includestdio.h
#includealgorithm
using namespace std;
typedef struct bg
{
int h;
int l;
int t;
int tlcha;
}bg;
int cmp1(bg a,bg b)
{
return a.tb.t;
}
int cmp2(bg a,bg b)
{
return a.tlchab.tlcha;
}
int n;
bg bbg[32];
int k=0;
int ma=-1;
int dfs(int count,int sumshijian,int zuidazhi)
{ if(count==n)
{
if(mazuidazhi) ma=zuidazhi;
return 1;
}
dfs(count+1,sumshijian,zuidazhi);
if(bbg[count].t-sumshijian=bbg[count].l)
dfs(count+1,sumshijian+bbg[count].l,zuidazhi+bbg[count].h);
}
int main()
{
int h,l,t;
while(scanf(%d,&n)!=EOF)
{ if(n0) break;
for(int i=0;in;i++)
{
scanf(%d%d%d,&bbg[i].h,&bbg[i].l,&bbg[i].t);
bbg[i].tlcha=bbg[i].t-bbg[i].l;
}
k=0;
sort(bbg,bbg+n,cmp1);
ma=-1;
dfs(0,0,0);
printf(%dn,ma);
}
}