多尺度的学习

文章探讨了在目标检测中,由于物体尺度差异导致的模型精度问题。深层特征虽能提供丰富的语义信息,但对小目标不利。解决策略是根据任务需求调整网络深度,以平衡小目标和大目标的检测性能。
摘要由CSDN通过智能技术生成

文章目录

参考链接

在目标检测任务中,被测目标的大小经常是不固定的。在被测物体尺度相差极大时,模型通常难以对极大和极小的物体同时进行检测。

首先,要知道为什么被测物体尺度相差过大会造成模型精度降低。物体检测领域中各个模型的骨干网络,无外乎不是使用多层卷积逐步提取图像深层信息,生成多层特征图,并基于深层特征图做定位、分类等进一步处理。

在这“由浅至深”的特征提取过程中,浅层特征具有较高的分辨率,可以携带丰富的几何细节信息,但感受野很小且缺乏语义信息,与之相反的是,深层特征具备较大的感受野以及丰富的语义信息,但分辨率不高,难以携带几何细节信息此时假设我们将模型继续加深,超深层特征中将具有极大的感受野,被测物体的语义信息也会因被周遭环境信息所稀释而降低

如果训练数据中同时包含尺度极大和极小的被测物体,那么会发生什么呢?

在这里插入图片描述

如上图所示,假设模型一共有100层,大小目标的细节信息都随着模型层数的加深而衰退。对于语义信息而言,由于小目标尺度小,随着模型层数的增多(下采样次数的增多),语义信息可能在25层即提取完毕,之后随着层数的继续增加,小目标的语义信息也会快速被环境信息所稀释;而大目标尺度大,可能要在50层才能提取到足够的语义信息,但此时小目标的语义信息已经丢失的差不多了。

那么这个网络的深度应定为25层,还是50层,亦或是37层呢?定25层则对小目标的检测效果好而大目标检测能力差;定50层则反之;定37层则两类目标的检测能力较为均衡但都不在最好的检测状态。而这就是多尺度”目标检测问题的根源所在

os:根据具体任务和数据集的需求,需要综合考虑小目标和大目标的重要性以及数据集中目标的尺度范围,来选择合适的网络深度,或者说是从哪一层去提取到小尺度、大尺度的目标。

  • 语义信息:图像中物体、场景或概念的语义表示,应该就是类别
  • 几何细节信息:图像中的边缘、角点、纹理或深度信息,应该就是位置、目标大小
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孟孟单单

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值