杭电oj 1003 Max Sum(动态规划)

题目链接Max Sum

Problem Description

Given a sequence a[1],a[2],a[3]…a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14

Input

The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).

Output

For each test case, you should output two lines. The first line is “Case #:”, # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.

Sample Input

2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5

Sample Output

Case 1:
14 1 4

Case 2:
7 1 6

题目大意

给定序列a[1]、a[2]、[3]…a[n],计算子序列的最大和。例如,给定(6,-1,5,4,-7),此序列中的最大和为6+(-1)+5+4=14。

解题思路

这个问题就是用动态规划求最大连续子序列和,令状态dp[i]表示以a[i]作为末尾的连续序列的最大和。以样例为例:序列 6 -1 5 4 -7,下标分别为0,1,2,3,4

dp[0]=6
dp[1]=5(6+(-1)=5)
dp[2]=10(6+(-1)+5=10)
dp[3]=14(6+(-1)+5+4=14)
dp[4]=7(6+(-1)+5+4+(-7)=7)
因为dp数组的含义,a[4]必须作为l连续序列的结尾,于是最大和不是6+(-1)+5+4=14,而是6+(-1)+5+4+(-7)=7

通过设置dp数组,要求的最大和就是dp[0],dp[1],dp[2],…,dp[n-1]中的最大值,那么问题就转化成如何求dp数组。
因为dp[i]要求是必须以a[i]结尾的连续序列,那么只有两种情况:

1.这个最大和的连续子序列只有一个元素,即以a[i]开始,a[i]结束
2.这个最大连续序列有多个元素,即从前面某处a[p]开始,一直到a[i]结束(p<i)
对于第一种情况,最大和就是a[i]本身。
对于第一种情况,最大和就是dp[i-1]+a[i],即a[p]+a[p&

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值