Uncertainty Quantification of Collaborative Detection for Self-Driving
摘要
在联网和自动驾驶汽车(CAVs)之间共享信息从根本上提高了自动驾驶协同目标检测的性能。然而,由于实际挑战,CAV 在目标检测方面仍然存在不确定性,这将影响自动驾驶中的后续模块,例如规划和控制。因此,不确定性量化对于 CAV 等安全关键系统至关重要。我们的工作是第一个估计协作目标检测的不确定性的工作。我们提出了一种新的不确定性量化方法,称为双 M 量化,它通过直接建模边界框每个角的多变量高斯分布来调整移动块引导 (MBB) 算法。我们的方法通过基于离线双 M 训练过程的一次推理传递来捕获认知不确定性和任意不确定性。它可以用于不同的协作对象检测器。通过对综合协同感知数据集进行了实验,我们表明与最先进的不确定性量化方法相比,我们的 Double-M 方法在不确定性得分上提高了 4× 以上,准确率提高了 3% 以上。我们的代码在 https://coperception.github.io/double-m-quantification/
引言
在本文中,我们提出了一种新的用于协同目标检测的不确定性量化方法,称为DoubleM量化(直接建模移动块自举量化),它只需要一个推理通道即可捕获认知和任意不确定性。我们的方法为每个检测到的目标构建的不确定性集有助于后续模块完成自动驾驶任务,如不确定性传播的轨迹预测[25]和鲁棒规划与控制[26],[27]。从图1可以看出,采用我们的不确定性量化方法,检测精度低的目标往往具有较大的不确定性,构建的不确定性集在大多数情况下覆盖了ground-truth bounding box。与目前的现状[20],[21]相比,我们的Double-M Quantification方法在综合协同感知数据集V2X-SIM上的不确定性评分提高了4倍,准确率提高了3.04%[1]。
图1:左图为鸟瞰图(BEV)中间协同的检测结果,右图对特定部分进行放大,显示两种检测的鲁棒范围。红框代表预测,绿框代表事实。橙色椭圆表示每个角的协方差。阴影凸包表示被检测对象的不确定性集。在大多数情况下,阴影凸包覆盖绿色边界框,这有助于后续模块完成自动驾驶任务,如不确定性传播的轨迹预测[25]和鲁棒规划与控制[26],[27]。采用我们的Double-M量化方法,检测精度低的目标往往具有较大的不确定性。
我们的贡献:
1)据我们所知