【代码解读】OpenCOOD框架之model模块(以PointPillarFCooper为例)


(紧扣PointPillarFCooper的框架结构,一点一点看代码)

PointPillarFCooper

# -*- coding: utf-8 -*-
# Author: Runsheng Xu <rxx3386@ucla.edu>
# License: TDG-Attribution-NonCommercial-NoDistrib
import pprint

import torch.nn as nn

from opencood.models.sub_modules.pillar_vfe import PillarVFE
from opencood.models.sub_modules.point_pillar_scatter import PointPillarScatter
from opencood.models.sub_modules.base_bev_backbone import BaseBEVBackbone
from opencood.models.sub_modules.downsample_conv import DownsampleConv
from opencood.models.sub_modules.naive_compress import NaiveCompressor
from opencood.models.fuse_modules.f_cooper_fuse import SpatialFusion


class PointPillarFCooper(nn.Module):
    """
    F-Cooper implementation with point pillar backbone.
    """
    def __init__(self, args):
        super(PointPillarFCooper, self).__init__()
        print("args: ")
        pprint.pprint(args)
        self.max_cav = args['max_cav']
        # PIllar VFE Voxel Feature Encoding
        self.pillar_vfe = PillarVFE(args['pillar_vfe'],
                                    num_point_features=4,
                                    voxel_size=args['voxel_size'],
                                    point_cloud_range=args['lidar_range'])
        self.scatter = PointPillarScatter(args['point_pillar_scatter'])
        self.backbone = BaseBEVBackbone(args['base_bev_backbone'], 64)
        # used to downsample the feature map for efficient computation
        self.shrink_flag = False
        if 'shrink_header' in args:
            self.shrink_flag = True
            self.shrink_conv = DownsampleConv(args['shrink_header'])
        self.compression = False

        if args['compression'] > 0:
            self.compression = True
            self.naive_compressor = NaiveCompressor(256, args['compression'])

        self.fusion_net = SpatialFusion()

        self.cls_head = nn.Conv2d(128 * 2, args['anchor_number'],
                                  kernel_size=1)
        self.reg_head = nn.Conv2d(128 * 2, 7 * args['anchor_number'],
                                  kernel_size=1)

        if args['backbone_fix']:
            self.backbone_fix()

  • args: 其实就是从hypes_yaml配置文件里传来的参数
args:
{'anchor_number': 2,
 'backbone_fix': False,
 'base_bev_backbone': {'layer_nums': [3, 5, 8],
                       'layer_strides': [2, 2, 2],
                       'num_filters': [64, 128, 256],
                       'num_upsample_filter': [128, 128, 128],
                       'upsample_strides': [1, 2, 4]},
 'compression': 0,
 'lidar_range': [-140.8, -40, -3, 140.8, 40, 1],
 'max_cav': 5,
 'pillar_vfe': {'num_filters': [64],
                'use_absolute_xyz': True,
                'use_norm': True,
                'with_distance': False},
 'point_pillar_scatter': {'grid_size': array([704, 200,   1], dtype=int64),
                          'num_features': 64},
 'shrink_header': {'dim': [256],
                   'input_dim': 384,
                   'kernal_size': [1],
                   'padding': [0],
                   'stride': [1]},
 'voxel_size': [0.4, 0.4, 4]}

    def backbone_fix(self):
        """
        Fix the parameters of backbone during finetune on timedelay。
        """
        for p in self.pillar_vfe.parameters():
            p.requires_grad = False

        for p in self.scatter.parameters():
            p.requires_grad = False

        for p in self.backbone.parameters():
            p.requires_grad = False

        if self.compression:
            for p in self.naive_compressor.parameters():
                p.requires_grad = False
        if self.shrink_flag:
            for p in self.shrink_conv.parameters():
                p.requires_grad = False

        for p in self.cls_head.parameters():
            p.requires_grad = False
        for p in self.reg_head.parameters():
            p.requires_grad = False

backbone_fix 方法用于在模型微调过程中固定骨干网络的参数,以避免它们被更新。
遍历了模型中各个需要固定参数的组件,并将它们的 requires_grad 属性设置为 False,这意味着这些参数不会被优化器更新。
我们来看 forward 方法:

    def forward(self, data_dict):
        voxel_features = data_dict['processed_lidar']['voxel_features']
        voxel_coords = data_dict['processed_lidar']['voxel_coords']
        voxel_num_points = data_dict['processed_lidar']['voxel_num_points']
        record_len = data_dict['record_len']

        batch_dict = {'voxel_features': voxel_features,
                      'voxel_coords': voxel_coords,
                      'voxel_num_points': voxel_num_points,
                      'record_len': record_len}
        # n, 4 -> n, c
        batch_dict = self.pillar_vfe(batch_dict)
        # n, c -> N, C, H, W
        batch_dict = self.scatter(batch_dict)
        batch_dict = self.backbone(batch_dict)

        spatial_features_2d = batch_dict['spatial_features_2d']
        # downsample feature to reduce memory
        if self.shrink_flag:
            spatial_features_2d = self.shrink_conv(spatial_features_2d)
        # compressor
        if self.compression:
            spatial_features_2d = self.naive_compressor(spatial_features_2d)

        fused_feature = self.fusion_net(spatial_features_2d, record_len)

        psm = self.cls_head(fused_feature)
        rm = self.reg_head(fused_feature)

        output_dict = {'psm': psm,
                       'rm': rm}

        return output_dict

forward 方法定义了模型的前向传播过程。它接受一个数据字典作为输入,包含了经过处理的点云数据。
首先,从输入字典中提取出点云特征、体素坐标、体素点数等信息。
然后,依次将数据通过 pillar_vfe、scatter 和 backbone 这几个模块进行处理,得到了一个包含了空间特征的张量 spatial_features_2d。
如果启用了特征图的下采样(shrink_flag 为 True),则对 spatial_features_2d 进行下采样。
如果启用了特征压缩(compression 为 True),则对 spatial_features_2d 进行压缩。
最后,将压缩后的特征通过 fusion_net 进行融合,并通过 cls_head 和 reg_head 进行分类和回归,得到预测结果。
整个 forward 方法实现了模型的数据流动过程,从输入数据到最终输出结果的计算过程。

  • PointPillarsFcooper结构
PointPillarFCooper(
  (pillar_vfe): PillarVFE(
    (pfn_layers): ModuleList(
      (0): PFNLayer(
        (linear): Linear(in_features=10, out_features=64, bias=False)
        (norm): BatchNorm1d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
      )
    )
  )
  (scatter): PointPillarScatter()
  (backbone): BaseBEVBackbone(
    (blocks): ModuleList(
      (0): Sequential(
        (0): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0)
        (1): Conv2d(64, 64, kernel_size=(3, 3), stride=(2, 2), bias=False)
        (2): BatchNorm2d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (3): ReLU()
        (4): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (5): BatchNorm2d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (6): ReLU()
        (7): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (8): BatchNorm2d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (9): ReLU()
        (10): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (11): BatchNorm2d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (12): ReLU()
      )
      (1): Sequential(
        (0): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0)
        (1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), bias=False)
        (2): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (3): ReLU()
        (4): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (5): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (6): ReLU()
        (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (8): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (9): ReLU()
        (10): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (11): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (12): ReLU()
        (13): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (14): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (15): ReLU()
        (16): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (17): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (18): ReLU()
      )
      (2): Sequential(
        (0): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0)
        (1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), bias=False)
        (2): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (3): ReLU()
        (4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (5): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (6): ReLU()
        (7): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (8): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (9): ReLU()
        (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (11): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (12): ReLU()
        (13): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (14): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (15): ReLU()
        (16): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (17): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (18): ReLU()
        (19): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (20): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (21): ReLU()
        (22): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (23): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (24): ReLU()
        (25): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (26): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (27): ReLU()
      )
    )
    (deblocks): ModuleList(
      (0): Sequential(
        (0): ConvTranspose2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (1): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (2): ReLU()
      )
      (1): Sequential(
        (0): ConvTranspose2d(128, 128, kernel_size=(2, 2), stride=(2, 2), bias=False)
        (1): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (2): ReLU()
      )
      (2): Sequential(
        (0): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(4, 4), bias=False)
        (1): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (2): ReLU()
      )
    )
  )
  (shrink_conv): DownsampleConv(
    (layers): ModuleList(
      (0): DoubleConv(
        (double_conv): Sequential(
          (0): Conv2d(384, 256, kernel_size=(1, 1), stride=(1, 1))
          (1): ReLU(inplace=True)
          (2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (3): ReLU(inplace=True)
        )
      )
    )
  )
  (fusion_net): SpatialFusion()
  (cls_head): Conv2d(256, 2, kernel_size=(1, 1), stride=(1, 1))
  (reg_head): Conv2d(256, 14, kernel_size=(1, 1), stride=(1, 1))
)

PointPillars

在这里插入图片描述
网络overview:网络的主要组成部分是PFN、Backbone和 SSD 检测头。原始点云被转换为堆叠的柱子张量和柱子索引张量。编码器使用堆叠的柱子来学习一组特征,这些特征可以分散回卷积神经网络的 2D 伪图像。检测头使用来自主干的特征来预测对象的 3D 边界框。请注意:在这里,我们展示了汽车网络的骨干维度。
(每个样本的非空柱子数量 § 、每个柱子点数量 (N)、每个点的属性维度(D) )
C是经过学习之后每个柱子的特征维度,然后scatter back回原始图像,H 和 W 表示画布的高度和宽度。)

PillarVFE

就是 voxel feature encoder:先对点云进行特征提取
VFE由PFNLayer(Pillar Feature Net)组成

  • model_cfg
{'num_filters': [64],
 'use_absolute_xyz': True,
  'use_norm': True,
  'with_distance': False},
class PillarVFE(nn.Module):
    def __init__(self, model_cfg, num_point_features, voxel_size,
                 point_cloud_range):
        super().__init__()
        self.model_cfg = model_cfg

        self.use_norm = self.model_cfg['use_norm']
        self.with_distance = self.model_cfg['with_distance']

        self.use_absolute_xyz = self.model_cfg['use_absolute_xyz']
        num_point_features += 6 if self.use_absolute_xyz else 3
        if self.with_distance:
            num_point_features += 1

        self.num_filters = self.model_cfg['num_filters']
        assert len(self.num_filters) > 0
        num_filters = [num_point_features] + list(self.num_filters)

        pfn_layers = []
        for i in range(len(num_filters) - 1):
            in_filters = num_filters[i]
            out_filters = num_filters[i + 1]
            pfn_layers.append(
                PFNLayer(in_filters, out_filters, self.use_norm,
                         last_layer=(i >= len(num_filters) - 2))
            )
        self.pfn_layers = nn.ModuleList(pfn_layers)

        self.voxel_x = voxel_size[0]
        self.voxel_y = voxel_size[1]
        self.voxel_z = voxel_size[2]
        self.x_offset = self.voxel_x / 2 + point_cloud_range[0]
        self.y_offset = self.voxel_y / 2 + point_cloud_range[1]
        self.z_offset = self.voxel_z / 2 + point_cloud_range[2]

PFNLayer

全连接+归一化

class PFNLayer(nn.Module):
    def __init__(self,
                 in_channels,
                 out_channels,
                 use_norm=True,
                 last_layer=False):
        super().__init__()

        self.last_vfe = last_layer
        self.use_norm = use_norm
        if not self.last_vfe:
            out_channels = out_channels // 2

        if self.use_norm:
            self.linear = nn.Linear(in_channels, out_channels, bias=False)
            self.norm = nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01)
        else:
            self.linear = nn.Linear(in_channels, out_channels, bias=True)

        self.part = 50000

forward函数

 def forward(self, batch_dict):

        voxel_features, voxel_num_points, coords = \
            batch_dict['voxel_features'], batch_dict['voxel_num_points'], \
            batch_dict['voxel_coords']
        points_mean = \
            voxel_features[:, :, :3].sum(dim=1, keepdim=True) / \
            voxel_num_points.type_as(voxel_features).view(-1, 1, 1)
        f_cluster = voxel_features[:, :, :3] - points_mean

        f_center = torch.zeros_like(voxel_features[:, :, :3])
        f_center[:, :, 0] = voxel_features[:, :, 0] - (
                coords[:, 3].to(voxel_features.dtype).unsqueeze(
                    1) * self.voxel_x + self.x_offset)
        f_center[:, :, 1] = voxel_features[:, :, 1] - (
                coords[:, 2].to(voxel_features.dtype).unsqueeze(
                    1) * self.voxel_y + self.y_offset)
        f_center[:, :, 2] = voxel_features[:, :, 2] - (
                coords[:, 1].to(voxel_features.dtype).unsqueeze(
                    1) * self.voxel_z + self.z_offset)

        if self.use_absolute_xyz:
            features = [voxel_features, f_cluster, f_center]
        else:
            features = [voxel_features[..., 3:], f_cluster, f_center]

        if self.with_distance:
            points_dist = torch.norm(voxel_features[:, :, :3], 2, 2,
                                     keepdim=True)
            features.append(points_dist)
        features = torch.cat(features, dim=-1)

        voxel_count = features.shape[1]
        mask = self.get_paddings_indicator(voxel_num_points, voxel_count,
                                           axis=0)
        mask = torch.unsqueeze(mask, -1).type_as(voxel_features)
        features *= mask
        for pfn in self.pfn_layers:
            features = pfn(features)
        features = features.squeeze()
        batch_dict['pillar_features'] = features
        return batch_dict

这是一个神经网络的前向传播函数,接受一个名为batch_dict的字典作为输入。该字典包含三个键值对,分别是voxel_features、voxel_num_points和voxel_coords,它们分别表示体素特征、体素点数和体素坐标。

首先,代码从batch_dict中获取了这些值,并计算了每个体素中点的均值points_mean,以及将每个点的坐标相对于体素中心的偏差f_cluster和f_center。接着,根据use_absolute_xyz的取值,选择是否使用绝对坐标信息。然后,将这些特征组合成一个特征向量features,并且如果设置了with_distance标志,还会计算点到原点的距离,并将距离特征添加到features中。

接下来,代码根据体素数量和特征维度获取了一个掩码mask,并将其应用到特征向量中,以确保每个样本的特征长度一致。然后,通过一系列pfn_layers中的神经网络层对特征向量进行处理,得到最终的features。最后,将features保存到batch_dict[‘pillar_features’]中,并返回更新后的batch_dict。

整体而言,这段代码主要用于对体素特征进行预处理和特征提取,以供后续的神经网络模型使用。

PointPillarScatter

主要作用就是三维点云压缩成bev(鸟瞰图)

class PointPillarScatter(nn.Module):
    def __init__(self, model_cfg):
        super().__init__()

        self.model_cfg = model_cfg
        self.num_bev_features = self.model_cfg['num_features']
        self.nx, self.ny, self.nz = model_cfg['grid_size']
        assert self.nz == 1
  • model_cfg:
{'grid_size': array([704, 200,   1], dtype=int64),
 'num_features': 64}

forword函数,

    def forward(self, batch_dict):
        pillar_features, coords = batch_dict['pillar_features'], batch_dict[
            'voxel_coords']
        # print('coords: ', coords)
        # print("coords[:, 0]: ",coords[:, 0])
        batch_spatial_features = []
        batch_size = coords[:, 0].max().int().item() + 1

        for batch_idx in range(batch_size):
            spatial_feature = torch.zeros(
                self.num_bev_features,
                self.nz * self.nx * self.ny,
                dtype=pillar_features.dtype,
                device=pillar_features.device)

            batch_mask = coords[:, 0] == batch_idx
            this_coords = coords[batch_mask, :]

            indices = this_coords[:, 1] + \
                      this_coords[:, 2] * self.nx + \
                      this_coords[:, 3]
            indices = indices.type(torch.long)

            pillars = pillar_features[batch_mask, :]
            pillars = pillars.t()
            spatial_feature[:, indices] = pillars
            batch_spatial_features.append(spatial_feature)

        batch_spatial_features = \
            torch.stack(batch_spatial_features, 0)
        batch_spatial_features = \
            batch_spatial_features.view(batch_size, self.num_bev_features *
                                        self.nz, self.ny, self.nx)
        batch_dict['spatial_features'] = batch_spatial_features

        return batch_dict

首先,从batch_dict中提取了两个键值对:pillar_features和voxel_coords。pillar_features包含了柱状特征,而voxel_coords包含了柱状特征对应的体素坐标。
然后,通过对体素坐标进行操作,确定了批次的大小batch_size。这是通过取coords张量的第一列的最大值来获得的。
接下来,使用一个循环来处理每个批次中的数据。在每个循环迭代中,首先创建一个与空间特征形状相同的零张量spatial_feature,其形状为(num_bev_features, nz * nx * ny)。
然后,通过将当前批次的索引与nx、ny相乘并加上z坐标,获得了在spatial_feature中的位置索引indices。
接着,根据批次的掩码,将对应批次的柱状特征取出,并将其转置。
最后,将转置后的柱状特征pillars填充到spatial_feature的对应位置索引indices中。
循环结束后,将所有的batch_spatial_features堆叠成一个张量,并重新调整形状为(batch_size, num_bev_features * nz, ny, nx)。
最后,将新生成的空间特征batch_spatial_features存储在batch_dict中,并返回batch_dict。

总体而言,这段代码的作用是将柱状特征转换成空间特征,并将其添加到输入的批次字典中。

BaseBEVBackbone

参考这个图
在这里插入图片描述
3 * Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)

5 * Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)

8 * Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)

3、5、8对应着layer_nums

  • model_cfg
{'layer_nums': [3, 5, 8],
 'layer_strides': [2, 2, 2],
 'num_filters': [64, 128, 256],
 'num_upsample_filter': [128, 128, 128],
 'upsample_strides': [1, 2, 4]},
class BaseBEVBackbone(nn.Module):
    def __init__(self, model_cfg, input_channels):
        super().__init__()
        self.model_cfg = model_cfg

        if 'layer_nums' in self.model_cfg:

            assert len(self.model_cfg['layer_nums']) == \
                   len(self.model_cfg['layer_strides']) == \
                   len(self.model_cfg['num_filters'])

            layer_nums = self.model_cfg['layer_nums']
            layer_strides = self.model_cfg['layer_strides']
            num_filters = self.model_cfg['num_filters']
        else:
            layer_nums = layer_strides = num_filters = []

        if 'upsample_strides' in self.model_cfg:
            assert len(self.model_cfg['upsample_strides']) \
                   == len(self.model_cfg['num_upsample_filter'])

            num_upsample_filters = self.model_cfg['num_upsample_filter']
            upsample_strides = self.model_cfg['upsample_strides']

        else:
            upsample_strides = num_upsample_filters = []

        num_levels = len(layer_nums)   # len(layer_nums)个Sequential
        c_in_list = [input_channels, *num_filters[:-1]]

        self.blocks = nn.ModuleList()
        self.deblocks = nn.ModuleList()

        for idx in range(num_levels):
            cur_layers = [
                nn.ZeroPad2d(1),
                nn.Conv2d(
                    c_in_list[idx], num_filters[idx], kernel_size=3,
                    stride=layer_strides[idx], padding=0, bias=False
                ),
                nn.BatchNorm2d(num_filters[idx], eps=1e-3, momentum=0.01),
                nn.ReLU()
            ]
            for k in range(layer_nums[idx]):  # 每个Sequential里有多少个以下结构
                cur_layers.extend([
                    nn.Conv2d(num_filters[idx], num_filters[idx],
                              kernel_size=3, padding=1, bias=False),
                    nn.BatchNorm2d(num_filters[idx], eps=1e-3, momentum=0.01),
                    nn.ReLU()
                ])

            self.blocks.append(nn.Sequential(*cur_layers))
            # 以下是deblock模块
            if len(upsample_strides) > 0:
                stride = upsample_strides[idx]
                if stride >= 1:
                    self.deblocks.append(nn.Sequential(
                        nn.ConvTranspose2d(
                            num_filters[idx], num_upsample_filters[idx],
                            upsample_strides[idx],
                            stride=upsample_strides[idx], bias=False
                        ),
                        nn.BatchNorm2d(num_upsample_filters[idx],
                                       eps=1e-3, momentum=0.01),
                        nn.ReLU()
                    ))
                else:
                    stride = np.round(1 / stride).astype(np.int)
                    self.deblocks.append(nn.Sequential(
                        nn.Conv2d(
                            num_filters[idx], num_upsample_filters[idx],
                            stride,
                            stride=stride, bias=False
                        ),
                        nn.BatchNorm2d(num_upsample_filters[idx], eps=1e-3,
                                       momentum=0.01),
                        nn.ReLU()
                    ))

        c_in = sum(num_upsample_filters)
        if len(upsample_strides) > num_levels:
            self.deblocks.append(nn.Sequential(
                nn.ConvTranspose2d(c_in, c_in, upsample_strides[-1],
                                   stride=upsample_strides[-1], bias=False),
                nn.BatchNorm2d(c_in, eps=1e-3, momentum=0.01),
                nn.ReLU(),
            ))

        self.num_bev_features = c_in

DownsampleConv

其实就是下采样(用了几个DoubleConv)
主要作用就是

  • 降低计算成本: 在深度神经网络中,参数量和计算量通常会随着输入数据的尺寸增加而增加。通过下采样,可以降低每个层的输入数据的尺寸,从而降低网络的计算成本。
  • 减少过拟合: 下采样可以通过减少输入数据的维度和数量来减少模型的复杂性,从而有助于降低过拟合的风险。过拟合是指模型在训练数据上表现良好,但在测试数据上表现较差的现象。
  • 提高模型的泛化能力: 通过减少输入数据的空间分辨率,下采样有助于模型学习更加抽象和通用的特征,从而提高了模型对于不同数据的泛化能力。
  • 加速训练和推理过程: 由于下采样可以降低网络的计算成本,因此可以加快模型的训练和推理过程。这对于处理大规模数据和实时应用特别有用。
class DownsampleConv(nn.Module):
    def __init__(self, config):
        super(DownsampleConv, self).__init__()
        self.layers = nn.ModuleList([])
        input_dim = config['input_dim']

        for (ksize, dim, stride, padding) in zip(config['kernal_size'],
                                                 config['dim'],
                                                 config['stride'],
                                                 config['padding']):
            self.layers.append(DoubleConv(input_dim,
                                          dim,
                                          kernel_size=ksize,
                                          stride=stride,
                                          padding=padding))
            input_dim = dim

config参数

{'dim': [256],
 'input_dim': 384,
 'kernal_size': [1],
 'padding': [0],
 'stride': [1]},

DoubleConv

其实就是两层卷积

class DoubleConv(nn.Module):
    """
    Double convoltuion
    Args:
        in_channels: input channel num
        out_channels: output channel num
    """

    def __init__(self, in_channels, out_channels, kernel_size,
                 stride, padding):
        super().__init__()
        self.double_conv = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size,
                      stride=stride, padding=padding),
            nn.ReLU(inplace=True),
            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
            nn.ReLU(inplace=True)
        )

SpatialFusion

其实就是取最大来进行融合特征
在这里插入图片描述

class SpatialFusion(nn.Module):
    def __init__(self):
        super(SpatialFusion, self).__init__()

    def regroup(self, x, record_len):
        cum_sum_len = torch.cumsum(record_len, dim=0)
        split_x = torch.tensor_split(x, cum_sum_len[:-1].cpu())
        return split_x

    def forward(self, x, record_len):
        # x: B, C, H, W, split x:[(B1, C, W, H), (B2, C, W, H)]
        split_x = self.regroup(x, record_len)
        out = []

        for xx in split_x:
            xx = torch.max(xx, dim=0, keepdim=True)[0]
            out.append(xx)
        return torch.cat(out, dim=0)

检测头

(cls_head): Conv2d(256, 2, kernel_size=(1, 1), stride=(1, 1))
(reg_head): Conv2d(256, 14, kernel_size=(1, 1), stride=(1, 1))
  • 17
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 10
    评论
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值