【RGB转灰度的几种算法】

RGB转灰度的几种算法

这里我用的摄像头是OV2640,这款摄像头的像素是200万。通过对摄像头拍摄图像的进行图像的转化,先把图像的格式转化为RGB565,然后在进行灰度的转化,最后进行二值化处理,设定阈值,进行二值化的处理,通过设置二值化的位数可以提高二值化的精度,使二值化的效果更加清晰,我用的OV2640可以对焦距进行调节,这样的话,可以使拍摄的图像的效果更加完善。大家可以根据自己的摄像头进行设置。我看了飞思卡尔的K60带的摄像头山外鹰眼OV7725,他带的摄像头可以通过硬件进行二值化(硬性二值化)的处理,效果非常好,也可以说效果比我们用软件实现的效果不知道要好多少;还有就是现在比较火的一款图像设别的开源设备openmv使用python写的图形处理,openmv在颜色识别、二维码识别、面部识别、图像识别和特征点识别上功能非常强大,感兴趣的可以自己去尝试玩一下。
方法一:
对于彩色转灰度,有一个很著名的心理学公式:
Gray = R0.299 + G0.587 + B*0.114

void colorToGray(COLORREF& c)//E2:把彩色图像修改成灰度图像
{
	BYTE R = GetRValue(c);
	BYTE G = GetGValue(c);
	BYTE B = GetBValue(c);
	BYTE gray = R * 0.299 + G * 0.587 + B * 0.114;//彩色转灰度图像公式

	c = RGB(gray, gray, gray);//c中存储转换后的灰度值
}

方法二:

 而实际应用时,希望避免低速的浮点运算,所以需要整数算法。
 注意到系数都是3位精度的没有,我们可以将它们缩放1000倍来实现整数运算算法:

                      Gray = (R*299 + G*587 + B*114 + 500) / 1000

 RGB一般是8位精度,现在缩放1000倍,所以上面的运算是32位整型的运算。注意后面那个除法是整数 除法,所以需要加上500来实现四舍五入。
  就是由于该算法需要32位运算,所以该公式的另一个变种很流行:
BYTE gray = R * 0.299 + G * 0.587 + B * 0.114;//彩色转灰度图像公式
gray = (R*30 + G*59 + B*11 + 50) / 100;//Gray = (R*30 + G*59 + B*11 + 50) / 100

方法三:

上面的整数算法已经很快了,但是有一点仍制约速度,就是最后的那个除法。移位比除法快多了,所以可以将系数缩放成2的整数幂。
习惯上使用16位精度,2的16次幂是65536,所以这样计算系数:

                      0.299 * 65536 = 19595.264 ≈ 19595
                      0.587 * 65536 + (0.264) = 38469.632 + 0.264 = 38469.896 ≈ 38469
                      0.114 * 65536 + (0.896) =   7471.104 + 0.896 = 7472

可能很多人看见了,我所使用的舍入方式不是四舍五入。四舍五入会有较大的误差,应该将以前的计算结果的误差一起计算进去,舍入方式是去尾法:
写成表达式是:

BYTE gray = (R * 19595 + G * 38469 + B * 7472) >> 16;//彩色转灰度图像公式

2至20位精度的系数:

                      Gray = (R*1 + G*2 + B*1) >> 2
                      Gray = (R*2 + G*5 + B*1) >> 3
                      Gray = (R*4 + G*10 + B*2) >> 4
                      Gray = (R*9 + G*19 + B*4) >> 5
                      Gray = (R*19 + G*37 + B*8) >> 6
                      Gray = (R*38 + G*75 + B*15) >> 7
                      Gray = (R*76 + G*150 + B*30) >> 8
                      Gray = (R*153 + G*300 + B*59) >> 9
                      Gray = (R*306 + G*601 + B*117) >> 10
                      Gray = (R*612 + G*1202 + B*234) >> 11
                      Gray = (R*1224 + G*2405 + B*467) >> 12
                      Gray = (R*2449 + G*4809 + B*934) >> 13
                      Gray = (R*4898 + G*9618 + B*1868) >> 14
                      Gray = (R*9797 + G*19235 + B*3736) >> 15
                      Gray = (R*19595 + G*38469 + B*7472) >> 16
                      Gray = (R*39190 + G*76939 + B*14943) >> 17
                      Gray = (R*78381 + G*153878 + B*29885) >> 18
                      Gray = (R*156762 + G*307757 + B*59769) >> 19
                      Gray = (R*313524 + G*615514 + B*119538) >> 20

仔细观察上面的表格,这些精度实际上是一样的:3与4、7与8、10与11、13与14、19与20
所以16位运算下最好的计算公式是使用7位精度,比先前那个系数缩放100倍的精度高,而且速度快:
Gray = (R38 + G75 + B15) >> 7
其实最有意思的还是那个2位精度的,完全可以移位优化:
Gray = (R + (WORD)G<<1 + B) >> 2
方法四:
另一种是 Adobe Photoshop 里的公式
Adobe RGB (1998) [gamma=2.20]
Gray = (R^2.2 * 0.2973 + G^2.2 * 0.6274 + B^2.2 * 0.0753)^(1/2.2)
该方法运行速度稍慢,但是效果很好。
方法五:
还有就是平均值方法
GRAY = (RED+BLUE+GREEN)/3
(GRAY,GRAY,GRAY ) 替代 (RED,GREEN,BLUE)
但是这样做的精度比较低,图像转化为灰度效果不是太好。
综合上面的算法对我个人而言,我更喜欢用方法三的转化方法,转化的效果跟转化的精度都可以。
下面是我利用OV2640摄像头与灰度公式Gray = (R
19595 + G38469 + B7472) >> 16进行拍摄的图像,上面是灰度图像,下面是二值化图像,因为边沿所以导致在图像周围很多噪点。
请添加图片描述
下面的图像阈值我设置为90,因为这是我晚上做的实验,晚上工作室光照强度不好,调大阈值可以得到更好的二值化图像。旁边的黑点同样是边缘造成的噪点,只要进行个过滤噪点操作就可以了。
请添加图片描述
本文转载自:张大猛 https://www.cnblogs.com/zhangjiansheng/p/6925722.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值