# LightOJ 1060 - nth Permutation （逆康托展开的思想）

n<=20k$求n<=20长度串的所有排列的按照字典序的第k个序列$

f=n!/(cnta!cntb!cntz!)$总排列数f = n!/(cnt_a!*cnt_b!* \cdots *cnt_z!)$
$恢复序列的思想类似于逆康托展开$点击这里
dp$这个题也可以用状压dp来做 -- 弱表示不会$

//
//  Created by TaoSama on 2015-11-20
//
#include <algorithm>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <string>
#include <set>
#include <vector>

using namespace std;
#define pr(x) cout << #x << " = " << x << "  "
#define prln(x) cout << #x << " = " << x << endl
const int N = 1e5 + 10, INF = 0x3f3f3f3f, MOD = 1e9 + 7;

typedef long long LL;
int n, cnt[26];
LL k, fact[25] = {1};
char s[25];

int main() {
#ifdef LOCAL
freopen("C:\\Users\\TaoSama\\Desktop\\in.txt", "r", stdin);
//  freopen("C:\\Users\\TaoSama\\Desktop\\out.txt","w",stdout);
#endif
ios_base::sync_with_stdio(0);

int t; scanf("%d", &t);
int kase = 0;
for(int i = 1; i <= 20; ++i) fact[i] = fact[i - 1] * i;
while(t--) {
scanf("%s%lld", s + 1, &k);
n = strlen(s + 1);
memset(cnt, 0, sizeof cnt);
for(int i = 1; i <= n; ++i) cnt[s[i] - 'a']++;

printf("Case %d: ", ++kase);
LL maxk = fact[n];
for(int i = 0; i < 26; ++i) maxk /= fact[cnt[i]];
if(k > maxk) {puts("Impossible"); continue;}

for(int i = 1; i <= n; ++i) {
for(int j = 0; j < 26; ++j) {
if(!cnt[j]) continue;
--cnt[j];
LL tmp = fact[n - i];
for(int k = 0; k < 26; ++k)
tmp /= fact[cnt[k]];
if(k <= tmp) {
putchar('a' + j);
break;
}
++cnt[j];
k -= tmp;
}
}
puts("");
}
return 0;
}

04-26 1145

06-22 8321

11-01 707

07-05 2081

07-21 1133

10-10 663

05-30 96

02-03 698

11-04 1717

09-01 540