- 博客(61)
- 收藏
- 关注
原创 c++primer plus读后感
这是一本写的挺详细的书。也是唯一一本读的让我烦躁的想吐的书。一直对老外写的书很有好感,因为大多数老外写的书不拽名词,说道理娓娓道来,通俗易懂的把很专业的东西给你讲明白。但是这本书把这个风格发扬到极致,简直啰里啰嗦(作者简直是话痨),加上外国人有些古怪的表达方式,和翻译者蹩脚的翻译(我总是怀疑译者是用机器翻译的,或者译者本身太古板教条,亦或者译者对知识缺乏深入的了解),再加上层出不穷的印刷错误(已经第六版了啊,错误还如此多)。可以说,这是唯一一本让我看着中文都头昏脑涨,看了一堆话还不明所以,多少次烦躁不安要
2021-01-25 22:38:50 891
原创 仅仅说一下C++的显式实例化
关于显式实例化的资料,网上很多,看了看大多都是你抄我,我抄你,或者照搬cpp primer plus的说法,看得还是稀里糊涂。理解这个需要先了解一下C++程序的编译。先说一下编译。我们的程序代码不能直接被计算机的CPU识别并运行,因此,必须把类似英文自然语言的程序代码经过编译器的处理,变成计算机能识别的机器代码。而计算机的机器代码是很朴素的,没有那么多的华丽胡哨的东西,只有一些简单的比如寻找地址、取出数据,数据加减乘除运算等基本内容,什么类啊、函数啊这些东西最终都会转化为这些朴素的代码。原则上,我们
2021-01-20 20:31:57 928
原创 安卓学习笔记:ListView的用法
ListView显示列表数据,内容可以简单的就是一行行的字符串,也可以复杂到每一行数据就是包含特定排版格式的数字、字符串、图像等的组合。简单的纯字符串的ListView的使用方法如下:1.先引用在布局中设计好的ListView组件:ListView listView=(ListView) findViewById(R.id.list_view_xxx);2.准备好ListView要使用的...
2020-04-13 23:42:58 734
原创 gensim文本相似度比较浅析探究
这篇文章不是复制粘贴代码叫你怎么生成向量,怎么用余弦相似度计算文档的相似度(虽然可能也有这样的功能),而是尝试探究文档相似度比较的背后发生了什么。也许从很多百度得到的资料,明白了两个向量是如何计算相似度的,很简单:cos(a)=(A.B)/(|A|.|B|).很简单不是吗?但是这里有个问题,不同文档,分词后它的词向量个数不同,比如:this is beebee这两个文档一个有三个词,一个两...
2019-05-13 00:57:49 1275
原创 python filter()函数
经常用户数据的过滤,filter() 函数用于过滤序列,过滤掉不符合条件的元素,返回由符合条件元素组成的新列表。该接收两个参数,第一个为函数,第二个为序列,序列的每个元素作为参数传递给函数进行判,然后返回 True 或 False,最后将返回 True 的元素放到新列表中。以下是 filter() 方法的语法:filter(function, iterable)比如我们有如下数据:34....
2019-05-09 23:00:37 220
原创 torch.utils.data.Dataset用法
利用继承自Dataset的类,可以访问训练所需的数据比如一下数据:保存为csv文件from torch.utils.data import Datasetimport pandas as pd #这个包用来读取CSV数据class mydataset(Dataset): def __init__(self,csv_file): #self参数必须,其他参数及其形式随程序需要而不同...
2019-05-04 16:35:27 19472 6
原创 一个插件加速你的VS Code写Python的速度
VS Code是一个轻量化,免费的IDE,很多人喜欢用它写程序,但是很多人都觉得写Python的时候,VS Code的自动代码完成功能太慢了,远远不如Pycharm快,有的人甚至反映输入“.”以后,代码提示要一二十秒钟才会出现。如果你安装了我介绍的这个扩展插件,相信一定会体验到飞一般,甚至比PyCharm还快很多的提示速度。当然,第一次仍然和Pycharm的第一次一样慢,大概就四五秒,之后就是毫秒...
2019-03-25 23:03:57 10550
原创 学习python的lambda表达式
lambda表达式,通常是在需要一个函数,但是又不想费神去命名一个函数的场合下使用,也就是指匿名函数。lambda所表示的匿名函数的内容应该是很简单的,如果复杂的话,干脆就重新定义一个函数了,使用lambda就有点过于执拗了。lambda就是用来定义一个匿名函数的,如果还要给他绑定一个名字的话,就会显得有点画蛇添足,但是并不意味着不能给他定义一个名字。如下所示:add = lambda x,...
2019-03-19 17:28:03 329
转载 Python中的sorted函数以及operator.itemgetter函数
本文源自 洞庭小哥 的博文:https://blog.csdn.net/lewsn2008/article/details/12068205operator.itemgetter函数operator模块提供的itemgetter函数用于获取对象的哪些维的数据,参数为一些序号(即需要获取的数据在对象中的序号),下面看例子。a = [1,2,3]>>> b(a) 2 &g...
2019-03-19 15:46:02 216
原创 tensorflow多线程之QueueRunner的小总结
上一篇总结了FIFOQueue可知,有两种情况会挂起,一旦挂起,下面再花团锦簇的代码也是白瞎,不会得到执行,为了不让系统挂起,TF采用QueueRunner来控制对Queue的访问(尤其是程序猿自己写的复杂访问操作,不仅仅是enqueue,dequeue等)。QueueRunner可以创建独立的线程来实现对Queue的独立访问。...
2019-03-15 22:04:25 1063
原创 tensorflow多线程之Queue的小总结
只总结一下用的最多的先进先出队列FIFOQueue吧,其他队列一样,只不过出队的数据次序不同罢了。队列的性质,数据结构课程都会讲到,不在重复总结,TF为此结构准备了四个常用操作以符合队列的性质:FIFOQueue.enqueue():单个数据元素入队FIFOQueue.enqueue_many():多个元素批量入队FIFOQueue.dequeue():单个数据元素出队FIFOQueue...
2019-03-14 19:40:07 430
转载 关于卷积核输入输出通道数的简单只直观图示
图片来自网络。https://segmentfault.com/q/1010000016667038
2019-03-13 10:14:00 5081 1
原创 卷积函数演示
直接上代码吧:import numpy as npimport tensorflow as tf#此代码仅用于演示conv2d的参数意义,主要是padding,stride#先以2维矩阵测试,通道为channelsinput_channels=1input_data=np.reshape(np.linspace(1.0,60.0*input_channels,num=60*input...
2019-03-12 22:49:55 612
原创 一个有激活函数和没有激活函数的例子
闲来无事写的,本来想可视化一些,但是python编程实在不会,只能简化一下,自己理解吧PS:环形测试数据的生成代码来自网上import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt#为了说明问题,两个模型都设计为两层隐藏层tf.reset_default_graph()#生成测试数据类型1def ...
2019-03-11 11:27:39 1140
转载 tensorflow训练中出现nan问题
深度学习中对于网络的训练是参数更新的过程,需要注意一种情况就是输入数据未做归一化时,如果前向传播结果已经是[0,0,0,1,0,0,0,0]这种形式,而真实结果是[1,0,0,0,0,0,0,0,0],此时由于得出的结论不惧有概率性,而是错误的估计值,此时反向传播会使得权重和偏置值变的无穷大,导致数据溢出,也就出现了nan的问题。解决办法:1、对输入数据进行归一化处理,如将输入的图片数据除以2...
2019-03-10 09:42:34 540
原创 浅析TF中的多线程
TF在从文件读取大量数据的时候,由于文件读取的速度明显会低于内存中数据处理的速度,按照传统的方法,单流程的程序需要频繁等待文件的读取,然后再处理读取的数据,程序运行效率很慢,为了解决这个问题,TF也采用了多线程处理机制,但是TF的封装特点,导致和我们以前学习的其他语言的多线程处理方式大相径庭,较难理解。为了配合数据存取,TF在实现多线程的时候需要三个类互相配合:Queue,QueueRunner...
2019-01-22 11:47:51 1146
原创 tensorflow sobel算子构造表达式的理解
很多代码中,sobel算子表达式的构造语句如下:filter = tf.Variable(tf.constant([[-1.0,-1.0,-1.0], [0,0,0], [1.0,1.0,1.0], [-2.0,-2.0,-2.0], [0,0,0], [2.0,2.0,2.0], ...
2019-01-16 23:18:19 1245
原创 概率论第9记:随机变量的另外几个数字特征
这篇文章总结:矩、中心矩、分位数的概念矩和中心距设X是随机变量,如果E(Xk) k=1,2,…存在,则称它为X的k阶原点矩或k阶矩。如果E{[X-E(x)]k}存在,则称它为X的k阶中心矩。显然,2阶中心距就是方差。分位数设连续型随机变量X的分布函数为F(x),概率密度函数为f(x),1°对于任意正数α(0<α<1),称满足条件的数为此分布的α分位数或下α分位数.2...
2019-01-06 16:49:18 2616 1
原创 概率论第8记:随机变量的数字特征之协方差
前面讲了方差,是基于单个随机变量的。现在学习二维随机变量的方差,称为协方差。比较一下方差和协方差的定义表达式:为了清晰显示,不妨设cx=X-E(X),cy=Y-E(Y)方差:D(X)=E(cx2)协方差:COV(X,Y)=E(cx*cy)上面公式继续推导,con(X,Y)=E(XY)-E(X)E(Y)同时定义一个系数ρxy=cov(X,Y)D(X)D(Y)\rho_{xy}=\frac...
2019-01-06 09:19:13 1384 2
原创 概率论第7记:随机变量的数字特征之方差
数学期望即均值给出了随机变量的平均大小,然而我们还常常关心随机变量的取值在均值周围的散布程度.比如在考察一个地区农民的贫富情况时,我们不但关心农民的人均年收入,还关心各个农民的个人年收入与人均年收入的偏离程度.例如有甲、乙两个乡的人均年收入都是6000元,而两个乡农民的个人年收入的总的情况却不一样,甲乡各人的年收入大多集中在6000元附近,而乙乡农民的个人年收入与6000元的偏离程度较大,即贫富差...
2019-01-05 16:07:47 807
原创 概率论第6记:随机变量的数字特征之期望值
从现在开始,开始接触到神经网络里面经常遇到的一些概念:期望值、方差、协方差等。一个一个来所谓期望值,就是我们所说的算术平均值,如果还是不明白,那么举例如下:一书店购入一批(共N本)次年的挂历.在当年11月底前售出可盈利10元/本,当年12月份以折扣价售出盈利6元/本,次年1月份以进货价售出盈利0元/本,次年2月份作为废纸售出亏本9.7元/本.售出一本挂历盈利X(元)是一个随机变量,据往年经验知...
2019-01-05 11:18:53 1011
原创 概率论第5记:随机变量的独立性
设X,Y是两个随机变量,若对于任意实数a,b(a&amp;lt;b),c,d(c&amp;lt;d),事件{a&amp;lt;X≤b}和{c&amp;lt;Y≤d}相互独立,即P{a&amp;lt;X≤b,c&amp;lt;Y≤d}=P{a&amp;lt;X≤b}P{c&amp;lt;Y≤d},则称随机变量X,Y相互独立.离散型随机变量X,Y相互独立的充分必要条件是对于(X,Y)
2019-01-05 09:02:49 9433
原创 概率论第3记:随机变量2
今天写分布函数的总结分布函数把离散型和连续型随机变量用统一的形式描述。前面讲过概率密度,反应概率在某一点和阶梯(离散型而言)或者某一区间(连续型而言)概率的大小(连续型:区间积分,离散型:连加)现在将两种情况综合起来考虑:会发现,无论在某一个区间x=(a,b)之间的积分值为多少,至少当x从-∞到∞变化的时候随机变量X落在(-∞,x)的概率是一只单调增加,最终会变成1,于是我们就用这种新的函数...
2019-01-04 20:46:16 225
原创 概率论第2记:随机变量1
从这一章开始,概率统计进入高数的研究范围。打起精神吧什么是随机变量?如果我们先后抛掷两颗骰子,所有可能的样本空间S={(1,1),(1,2)…(2,1)…(6,6)},很多时候我们关心的不是样本空间,也不是先后抛出了多少点,而是关注两个骰子的点数加起来是多少点,比如加起来是5点的有(1,4)(2,3)(4,1)(3,2).这样,就是样本空间和具体的数值之间建立了某种关联,这个数值如果用字母X表...
2019-01-04 20:46:08 627
原创 概率论第1记:基础概念
基础概念一次随机试验所有可能的结果组成的集合称为样本空间样本空间的每一个元素称为样本点样本空间的任一子集称为一个随机事件。只有一个样本点的子集称为基本事件如果一次实验中,某随机事件包含的样本点出现了,我们称该事件发生了。它们之间的关系可以用图表示:特别的,整个样本空间由于每次试验一定出现S的样本点,所以,S称为必然事件。不包含任何样本点的空集∅称为不可能事件随机事件的关系运算事件...
2019-01-04 20:45:59 614
原创 概率论第4记:二维随机变量
通常因此随机实验,建立在样本空间上的随机变量不会只有一个,比如研究一个家庭的生活水平,不但观察月收入,还要观察月支出。一般,如果X,Y是定义在样本空间S上的随机变量,那么(X,Y)称为二维随机变量(或称二维随机向量),类似可以定义n维随机变量。定义:设二维随机变量(X,Y)所有可能的取值为(xi,yj),(i,j=1,2,3…);(X,Y)取(xi,yj)的概率为pij,称P{X=xi,Y=...
2019-01-04 20:45:47 6056
原创 基于tensorflow改写的mnist手写数字识别
隐藏层两层,神经元个数可以自定义,学习率采用退化学习率。尽了最大努力,最大识别率目前还不到98%,有没有高手指点一下?# -*- coding: UTF-8 -*-#主程序import numpy as npimport tensorflow as tffrom mnistread import *hidden_layer1_cells=400hidden_layer2_cells...
2018-12-24 19:58:49 224
原创 《深度学习之tensorflow。。。》例7-2等高线分析
例子7-2用等高线来图形分类三个样本集的数据。这里,用到了三个参数:x:横坐标y:纵坐标z:等高线坐标值,本例子中,用分类结果(0,1,2)区分高度z合格函数的运用,原例子较为复杂,下面的这个例子较为简短,有利于理解等高线的画法:import numpy as npimport matplotlib.pyplot as pltfrom matplotlib.colors impor...
2018-12-18 16:14:24 494
原创 深度学习之批量训练数据集大小对训练结果的影响
在学习深度学习的过程中,发现很多例子都采用批量训练的方法,比如每次迭代从数据集中选择50或者100条数据进行训练计算。这么做的好处是可以加快运算速度,但是,经过测试发现,过大批训练数据,容易引起训练结果不准确,拟合度低的缺点,下面我举一个例子说明:import numpy as npfrom sklearn.utils import shuffleimport matplotlib.pypl...
2018-12-16 22:47:44 19038 2
原创 大概了解交叉熵
在TF计算损失的时候,经常用到方差、交叉熵的概念和计算,作为判断两个量距离(通俗说就是近似度)的指标,方差的概念很容易理解,那么交叉熵是什么东西:先看一下教材或百科怎么说的:交叉熵(Cross Entropy)是Shannon信息论中一个重要概念,主要用于度量两个概率分布间的差异性信息。公式为:-(y*Ln(a)+(1-y)Ln(1-a)),其中y为期待值,a为逻辑回归的计算值我们用一组数...
2018-12-16 21:43:53 241
原创 《深度学习之tensorflow。。。》例7-1交叉熵的计算
近日看《深度学习之tensorflow。。。》例7-1,作者用到了交叉熵计算损失,用S函数作为激活函数:原代码如下:output =tf.nn.sigmoid( tf.matmul(input_features, W) + b)cross_entropy = -(input_lables * tf.log(output) + (1 - input_lables) * tf.log(1 - ou...
2018-12-16 20:40:41 220
原创 深度学习tensorflow:入门、原理与进阶实战的第一个例子简化演示
深度学习tensorflow:入门、原理与进阶实战的第一个例子,我做了适当简化,图像动态演示数据在训练过程中,不断逼近函数y=2x的过程。import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt#准备训练数据,并且画出数据点的分布train_X=np.linspace(-1,1,100)train_...
2018-12-02 14:26:35 2021
原创 浅谈TF的共享变量
先说说为什么需要共享变量。我们在训练模型的时候,需要一次次的输入训练数据,网络的权重和偏执在一次次的迭代过程中,不断地修正自身的值,这个迭代过程,我们通常的编程思路是这么做:conver1_weight=tf.xxx(conver1_weight,…)我们从两个方面考虑这么做的后果:1,迭代过程被封装在自己编写的函数内部(考虑到模块化或者代码易读性需要这么做),那么在函数内部的这个变量就是...
2018-12-01 13:27:42 605
转载 tensorflow创建变量以及根据名称查找变量
原文来源于:https://www.jb51.net/article/136172.htm声明变量主要有两种方法:tf.Variable和 tf.get_variable,二者的最大区别是:(1) tf.Variable是一个类,自带很多属性函数;而 tf.get_variable是一个函数;(2) tf.Variable只能生成独一无二的变量,即如果给出的name已经存在,则会自动修改生成...
2018-11-28 21:33:28 576
原创 TF之eval简述
TF学习中,经常看到tensor.eval这样的用法。tensor.eval()的意义和sess.run()一样,t.eval()等效于sess.run(t).但是二者也有些微区别,run可以同时运行多个tensor,比如下面的例子(引用网友的博客):t = tf.constant(42.0)u = tf.constant(37.0)tu = tf.mul(t, u)ut = tf.m...
2018-11-27 10:25:35 4927
原创 python之eval简述
eval()函数在Python中出镜率较高,TF中也频频出现。初学时候经常看的一头雾水。根据自己自学经验的查找的资料总结一下:先说Python中它能干啥,怎么用。函数原型:eval(expression, globals=None, locals=None)参数:globals和locals是表达式中变量所在的命名空间,一般默认是全局,但是也可以自己指定,globals必须是字典类型的数据...
2018-11-27 09:58:25 669
原创 tf.setdiff1d
setdiff1d(x,y)也是一个比较奇怪,不常用的函数。这个函数返回两个值:第一个是:在x中出现,但是在y中没有出现的的元素第二个是:这些元素在x中的索引(也就是下标或者位置)我们举例说明:import tensorflow as tfimport numpy as npx=[2,3,1,4,2,5]y=[2,5,6,7,8,3,9]z,idx=tf.setdiff1d(x,...
2018-11-26 20:38:08 823
原创 两个奇怪的TF索引操作和比较类函数
tf.invert_permutation(x)这是个奇怪的函数,之所以说奇怪,是因为学到目前为止,我还不清楚它有什么用,这个函数的功能是这么描述的:将x中元素的值当作索引,返回新的张量,用公式表达如下:设张量X=[x1,x2,x3,…xn],那么Y=tf.invert_permutation(X)=[yxi=i]...
2018-11-26 18:01:11 428 1
原创 简单看懂jupyter张量的显示
TF显示矩阵的时候,一开始对于高维张量的显示有些不适应,总结一下:先看代码:import numpy as npT1=np.array(np.random.randint(1,9,[5]))print(&amp;quot;1维数据的显示:\n&amp;quot;,T1)T2=np.array(np.random.randint(1,9,[2,3]))print(&amp;quot;2维数据的显示:\n&amp;quot;,T2)T
2018-11-23 20:55:11 662
原创 random_crop随机切割
通常用于切割图像数据。第一个代码例子请在本地运行#例子1import cv2import tensorflow as tfimg = cv2.imread("02.jpg)print(img)cv2.imshow("inputaa", img)import tensorflow as tfsess=tf.InteractiveSession() height, width = i...
2018-11-19 13:45:17 7864
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人