HDU1098 Ignatius's puzzle

1098

Ignatius’s puzzle

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 9936 Accepted Submission(s): 6961

Problem Description

Ignatius is poor at math,he falls across a puzzle problem,so he has no choice but to appeal to Eddy. this problem describes that:f(x)=5*x^13+13*x^5+k*a*x,input a nonegative integer k(k<10000),to find the minimal nonegative integer a,make the arbitrary integer x ,65|f(x)if
no exists that a,then print “no”.

Input
The input contains several test cases. Each test case consists of a nonegative integer k, More details in the Sample Input.

Output
The output contains a string “no”,if you can’t find a,or you should output a line contains the a.More details in the Sample Output.

Sample Input
11
100
9999

Sample Output
22
no
43

Author
eddy

Recommend
We have carefully selected several similar problems for you: 1071 1052 1049 1082 1064


f(x)=5*x^13+13*x^5+k*a*x,要使f(x)被65整除f(x)肯定为整数,—-》x为整数!=0,
f(x+1)=5*(x+1)^13+13*(x+1)^5+k*a*(x+1),将f(x+1)按二项式定理展开有:
f(x+1)=5*(c(13,0)*x^13+c(13,1)*x^12+c(13,2)*x^11+….+c(13,12)*x+c(13,13)*x^0)+
13*(c(5,0)x^5+c(5,1)*x^4+…..+c(5,4)*x^1+c(5,5)*x^0)+k*a(x+1)
由于c(13,1)…c(13,12)中间一定可以提取一个13,则有这些项*5之后一定可以被65整除
同理c(5,1)…c(5,4)一定可以提取一个5,则有这些项*13之后一定可以被65整除
所以:f(x+1)=5*(c(13,0)x^13+c(13,13)*x^0)+13(c(5,0)x^5+c(5,5)*x^0)+k*a(x+1)
只需要k*a*(x+1)能被65整除,即k*a*x能被65整除,要想取a最小值,x要取最小1或者-1。所以只需要18+k*a或者-18-k*a能被65整除。要使(18+k*a)%65==0,k*a肯定为65的倍数-18=47,而k最小为1.所以a最大为65 就可以了。
原文

#include<stdio.h>
#include<math.h>
using namespace std;
int main() {
    int k;
    while (scanf("%d",&k) != EOF)
    {
        bool flag = true;
        for (int i = 1; i <= 65; i++)
        {
            if (i*k % 65 == 47)
            {
                printf("%d\n", i);
                flag = false;
                break;
            }
        }
        if (flag)printf("no\n");
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值