混淆矩阵、ROC曲线,AUC值,K-S曲线

本文介绍了混淆矩阵、ROC曲线及其AUC值在模型评估中的应用,特别是针对二分类问题。混淆矩阵包括True Positive, False Positive, True Negative, False Negative四个指标;ROC曲线则展示了不同阈值下模型的性能,AUC值表示ROC曲线下的面积,反映了模型的区分能力。此外,文章还提及了F1 Score和K-S曲线作为模型评价的补充指标。" 124627080,7566441,JavaScript运行机制解析,"['javascript', '前端开发', '编程语言']
摘要由CSDN通过智能技术生成

数据分析与挖掘体系位置

混淆矩阵是评判模型结果的指标,属于模型评估的一部分。此外,混淆矩阵多用于判断分类器(Classifier)的优劣,适用于分类型的数据模型,如分类树(Classification Tree)、逻辑回归(Logistic Regression)、线性判别分析(Linear Discriminant Analysis)等方法。

在分类型模型评判的指标中,常见的方法有如下四种:

  • 混淆矩阵(也称误差矩阵,Confusion Matrix)
  • ROC曲线
  • AUC面积
  • K-S曲线
混淆矩阵的定义

混淆矩阵(Confusion Matrix),它的本质远没有它的名字听上去那么拉风。矩阵,可以理解为就是一张表格,混淆矩阵其实就是一张表格而已。

以分类模型中最简单的二分类为例,对于这种问题,我们的模型最终需要判断样本的结果是0还是1,或者说是positive还是negative。

我们通过样本的采集,能够直接知道真实情况下,哪些数据结果是positive,哪些结果是negative。同时,我们通过用样本数据跑出分类型模型的结果,也可以知道模型认为这些数据哪些是positive,哪些是negative。

type I error is the rejection of a true null hypothesis (also known as ‘False Positive’)
type II error is failing to reject a fals

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值