广度优先遍历BFS

问题描述
  栋栋最近开了一家餐饮连锁店,提供外卖服务。随着连锁店越来越多,怎么合理的给客户送餐成为了一个急需解决的问题。
  栋栋的连锁店所在的区域可以看成是一个n×n的方格图(如下图所示),方格的格点上的位置上可能包含栋栋的分店(绿色标注)或者客户(蓝色标注),有一些格点是不能经过的(红色标注)。
  方格图中的线表示可以行走的道路,相邻两个格点的距离为1。栋栋要送餐必须走可以行走的道路,而且不能经过红色标注的点。

这里写图片描述
  送餐的主要成本体现在路上所花的时间,每一份餐每走一个单位的距离需要花费1块钱。每个客户的需求都可以由栋栋的任意分店配送,每个分店没有配送总量的限制。
  现在你得到了栋栋的客户的需求,请问在最优的送餐方式下,送这些餐需要花费多大的成本。
输入格式
  输入的第一行包含四个整数n, m, k, d,分别表示方格图的大小、栋栋的分店数量、客户的数量,以及不能经过的点的数量。
  接下来m行,每行两个整数xi, yi,表示栋栋的一个分店在方格图中的横坐标和纵坐标。
  接下来k行,每行三个整数xi, yi, ci,分别表示每个客户在方格图中的横坐标、纵坐标和订餐的量。(注意,可能有多个客户在方格图中的同一个位置)
  接下来d行,每行两个整数,分别表示每个不能经过的点的横坐标和纵坐标。
输出格式
  输出一个整数,表示最优送餐方式下所需要花费的成本。
样例输入
10 2 3 3
1 1
8 8
1 5 1
2 3 3
6 7 2
1 2
2 2
6 8
样例输出
29

#include <iostream>
#include<vector>
#include<stack>
#include<cstring>
#include<queue>
#include<string>
#include<stdio.h>
using namespace std;
typedef struct node{
    int x;
    int y;
    int dis;///重商店到当前格子所经历的距离
    node(){};
    node(int xx,int yy,int d){
        x = xx;y = yy;dis = d;
    }
}node;
int n,m,k,d;
queue<node> q;
//int place[1005][1005];
long long order[1015][1015];
int ban[1015][1015];
int main()
{
    cin>>n>>m>>k>>d;
    for(int i=0;i<m;i++){
        int x,y;
        cin>>x>>y;
        q.push(node(x,y,0));
    }
    //memset(place,0,sizeof(place));
    memset(order,0,sizeof(order));
    memset(ban,0,sizeof(ban));
    for(int i=0;i<k;i++){
        int x,y,c;
        cin>>x>>y>>c;
        order[x][y] += c;/*******************一定要用+=因为不同用户,在同一点订餐**************/
    }
    for(int i=0;i<d;i++){
        int x,y;
        cin>>x>>y;
        ban[x][y] = -1;
    }
    int change[4][2] = {{0,-1},{0,1},{-1,0},{1,0}};/*********上下左右*/
    long long sum = 0;/*************************一定要注意最大情况是否超过了整型********/
    while(!q.empty()){
        node temp = q.front();
        q.pop();
        ban[temp.x][temp.y] = -1;
        int dis = temp.dis;
        int x = temp.x;
        int y = temp.y;
        for(int j=0;j<4;j++){
            int xx = x+change[j][0];
            int yy = y+change[j][1];
            if(xx>0&&yy>0&&xx<=n&&yy<=n&&ban[xx][yy]!=-1){
                //cout<<"li"<<endl;
                //place[xx][yy] = place[temp.x][temp.y]+1;
                sum += order[xx][yy]*(dis+1);//
                //cout<<place[xx][yy]<<endl;
                ban[xx][yy] = -1;
                q.push(node(xx,yy,dis+1));
            }
        }

    }
    cout<<sum<<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值