问题描述
栋栋最近开了一家餐饮连锁店,提供外卖服务。随着连锁店越来越多,怎么合理的给客户送餐成为了一个急需解决的问题。
栋栋的连锁店所在的区域可以看成是一个n×n的方格图(如下图所示),方格的格点上的位置上可能包含栋栋的分店(绿色标注)或者客户(蓝色标注),有一些格点是不能经过的(红色标注)。
方格图中的线表示可以行走的道路,相邻两个格点的距离为1。栋栋要送餐必须走可以行走的道路,而且不能经过红色标注的点。
送餐的主要成本体现在路上所花的时间,每一份餐每走一个单位的距离需要花费1块钱。每个客户的需求都可以由栋栋的任意分店配送,每个分店没有配送总量的限制。
现在你得到了栋栋的客户的需求,请问在最优的送餐方式下,送这些餐需要花费多大的成本。
输入格式
输入的第一行包含四个整数n, m, k, d,分别表示方格图的大小、栋栋的分店数量、客户的数量,以及不能经过的点的数量。
接下来m行,每行两个整数xi, yi,表示栋栋的一个分店在方格图中的横坐标和纵坐标。
接下来k行,每行三个整数xi, yi, ci,分别表示每个客户在方格图中的横坐标、纵坐标和订餐的量。(注意,可能有多个客户在方格图中的同一个位置)
接下来d行,每行两个整数,分别表示每个不能经过的点的横坐标和纵坐标。
输出格式
输出一个整数,表示最优送餐方式下所需要花费的成本。
样例输入
10 2 3 3
1 1
8 8
1 5 1
2 3 3
6 7 2
1 2
2 2
6 8
样例输出
29
#include <iostream>
#include<vector>
#include<stack>
#include<cstring>
#include<queue>
#include<string>
#include<stdio.h>
using namespace std;
typedef struct node{
int x;
int y;
int dis;///重商店到当前格子所经历的距离
node(){};
node(int xx,int yy,int d){
x = xx;y = yy;dis = d;
}
}node;
int n,m,k,d;
queue<node> q;
//int place[1005][1005];
long long order[1015][1015];
int ban[1015][1015];
int main()
{
cin>>n>>m>>k>>d;
for(int i=0;i<m;i++){
int x,y;
cin>>x>>y;
q.push(node(x,y,0));
}
//memset(place,0,sizeof(place));
memset(order,0,sizeof(order));
memset(ban,0,sizeof(ban));
for(int i=0;i<k;i++){
int x,y,c;
cin>>x>>y>>c;
order[x][y] += c;/*******************一定要用+=因为不同用户,在同一点订餐**************/
}
for(int i=0;i<d;i++){
int x,y;
cin>>x>>y;
ban[x][y] = -1;
}
int change[4][2] = {{0,-1},{0,1},{-1,0},{1,0}};/*********上下左右*/
long long sum = 0;/*************************一定要注意最大情况是否超过了整型********/
while(!q.empty()){
node temp = q.front();
q.pop();
ban[temp.x][temp.y] = -1;
int dis = temp.dis;
int x = temp.x;
int y = temp.y;
for(int j=0;j<4;j++){
int xx = x+change[j][0];
int yy = y+change[j][1];
if(xx>0&&yy>0&&xx<=n&&yy<=n&&ban[xx][yy]!=-1){
//cout<<"li"<<endl;
//place[xx][yy] = place[temp.x][temp.y]+1;
sum += order[xx][yy]*(dis+1);//
//cout<<place[xx][yy]<<endl;
ban[xx][yy] = -1;
q.push(node(xx,yy,dis+1));
}
}
}
cout<<sum<<endl;
return 0;
}