1.有因变量,则建立有监督模型
有监督模型具有两大通用目的:1)分析哪些自变量对因变量存在显著影响作用,
2)通过选择对因变量存在影响的自变量,建立预测因变量取值的预测模型。
1)因变量为连续变量(建立的模型称为回归预测模型),自变量为连续变量时,可选择回归分析,方差分析;自变量为分类变量或分类+连续变量,可选择带虚拟变量的回归分析、联合分析、方差分析。
2)因变量为分类变量(建立的模型称为分类预测模型),当自变量为连续变量(或连续+分类变量)时,可选用判别分析、Logistic、probit回归等;当自变量全部为分类变量时,可选用对数线性回归。
2.无因变量,则建立无监督模型
无监督模型具有两大通用目的:1)对人进行分类;
2)对变量/指标类进行分类
3)分析变量与变量之间的测量关系
1)自变量为连续变量时,选择因子分析(对变量/指标分类)、聚类分析(对人分类、对变量/指标分类)
2)自变量为分类变量时,对应分析(对人分类)、多维尺度分析(对人分类)
3.其他分析
1)当模型中需要加入潜在变量(通过多个客观指标测量的抽象概念)、或需要考虑多个变量之间的因果关系时,可选择结构方程模型、路径模型、协方差分析。
2)综合评价:通过多个指标对多个评价对象进行排名,可选择层次分析法、因子分析等。
相关系数