求解1-10000区间内的素数

问题:

求出所有1-MAX之间的素数

分析:

我们知道如何判断一个数是否为素数,判断number是否可以被1到sqrt(num)之间数整除,如果存在被整除的,不是素数,否则就是素数。

但是,如果用这种方法来计算,时间复杂度会非常高,我们采用另一种更好的方法——筛选法。

筛选法直观上比较好理解,从2开始,删除所有2*p(p>=2),然后再选取下一次没有被删除的数t,同样删除t*p(p>=2)的数,最后没有被删除的数就是我们要求的素数,这是直观上的理解,实际操作中可以有更多的优化,算法介绍参考链接:http://www.math.utah.edu/classes/216/assignment-07.html

算法代码如下:

#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <ctime>
using namespace std;

#define MAX 100000000

int main()
{
//	int a[MAX + 1];
	int *a = (int *)malloc((MAX + 1)*sizeof(int));
	if(a == NULL)
	{
		cout << "create memory error!" <<endl;
		return -1;
	}
	for (int i = 1; i <= MAX + 1; i++)	//初始化
		a[i] = 1;

	int t = 0;

	clock_t start = clock();
	for (int j = 2; j <= MAX; j++)
	{
		if (a[j])
		{
			for (t = 2; t * j <= MAX; t++)	//删除t*p,其中p>=2
			{
				a[t * j] = 0;
			}
		}
	}
	clock_t end = clock();

	printf("Time is: %f\n", (double)(end - start)/CLOCKS_PER_SEC);

	for (int i = 2; i <= 5000; i++)
		if(a[i])
			printf("%d ", i);

	free(a);

	return 0;
}

程序运行,1到1亿的数据,只需要8.24s,效率还是非常高。网上有更好的优化方法,但是思路还是一样的。

网上找到的更高效的算法,代码如下:

#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <ctime>
using namespace std;

#define MAX 100000000

int main()
{
//	int a[MAX + 1];
	int *a = (int *) malloc((MAX + 1) * sizeof(int));
	if (a == NULL)
	{
		cout << "create memory error!" << endl;
		return -1;
	}
	for (int i = 1; i <= MAX + 1; i++) //初始化
		a[i] = 1;

	int t = 0;
	int j;

	clock_t start = clock();
	for (int i = 2; i * i <= MAX; i++)
	{
		if (a[i])
		{
			for (j = i * i; j <= MAX; j += i)
				a[j] = 0;
		}
	}
	clock_t end = clock();

	printf("Time is: %f\n", (double) (end - start) / CLOCKS_PER_SEC);

	for (int i = 2; i <= 5000; i++)
		if (a[i])
			printf("%d ", i);

	free(a);

	return 0;
}
程序运行时间是5.43s,这里优化的地方是j从i*i开始,而不是i*2开始。

总结:

素数求解使用简单、高效的思路,而且非常适合计算机实行。

阅读更多 登录后自动展开
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页