二分搜索——最小值最大化、最大值最小化

二分算法(二分查找、折半查找),是从有序数据集中查找指定元素的算法。不断将有序数据集对半分割,并检查每个分区的中间元素,直到找到目标元素或者数据集不能再分割。

要求:二分的本质在于边界,左边的所有点有相同的性质,右边的点都有另一性质,所以序列必须是有序且连续的。

算法:

5个数字从小到大排序(a[i]):35678,找7第一次出现的位置。

第一步:L=1R=5mid=(R+L)/2=3 ,a[mid]=a[3]=6<7,说明下次需要在大于mid的序列中查找。

第二步:L=3R=5mid=(R+L)/2=4a[mid]=a[4]=7,查找结束,返回4

注意:由于(R+L)/2容易导致越界,如L=1999999998R=1999999999,那么L+R就会超出int的范围(最大不能超过2147483647)。因此可以将(R+L)/2改为:L+(R-L)/2

二分搜索——最小值最大化、最大值最小化

假设左边界是L,右边界是R,二分值mid= L+(R-L)/2

边界划分:[Lmid]

### 最小-最大归一化方法实现 最小-最大归一化是一种常用的数据预处理方法,用于将数据缩放到指定的范围(通常是[0, 1])。其核心公式为: \[ X_{norm} = \frac{X - X_{\min}}{X_{\max} - X_{\min}} \] 其中 \(X_{\min}\) 和 \(X_{\max}\) 分别表示数据列中的最小值最大值。以下是使用Python实现该方法的具体示例[^2]。 #### 示例代码 以下代码展示了如何通过手动计算以及使用`scikit-learn`库来实现最小-最大归一化。 ```python # 手动实现最小-最大归一化 import numpy as np # 假设数据是一个二维数组,行代表样本,列代表特征 data = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) # 计算每一列的最小值最大值 data_min = np.min(data, axis=0) data_max = np.max(data, axis=0) # 应用归一化公式 normalized_data = (data - data_min) / (data_max - data_min) print("归一化后的数据:") print(normalized_data) ``` 在上述代码中,`np.min(data, axis=0)` 和 `np.max(data, axis=0)` 分别计算了每列的最小值最大值,并将其应用于归一化公式中[^2]。 #### 使用`scikit-learn`库实现 `scikit-learn` 提供了内置的归一化工具,可以更方便地完成任务。 ```python from sklearn.preprocessing import MinMaxScaler import numpy as np # 原始数据 data = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) # 创建归一化对象 scaler = MinMaxScaler() # 对数据进行归一化 normalized_data = scaler.fit_transform(data) print("使用 scikit-learn 归一化后的数据:") print(normalized_data) ``` 在上述代码中,`MinMaxScaler` 自动计算了数据的最小值最大值,并应用了归一化公式[^4]。 ### 注意事项 - 如果数据中存在重复值或恒定值,则可能导致分母为零的情况。此时需要对数据进行检查并处理异常情况。 - 归一化通常适用于数值型特征,对于类别型特征可能需要其他处理方式。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值