导弹拦截
描述
某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。
输入导弹依次飞来的高度(雷达给出的高度数据是不大于 30000 的正整数),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。
输入描述
一行,为导弹依次飞来的高度。
输出描述
两行,分别是最多能拦截的导弹数与要拦截所有导弹最少要配备的系统数。
样例输入
389 207 155 300 299 170 158 65
样例输出
6
2
分析
(1)最多能拦截的导弹数:最长不升子序列
最长不升序列(Longest Increasing Subsequence,LIS):是指在一个无序的序列中,找到一个子序列使得这个子序列中的元素不升,并且这个子序列的长度最长。
(2)最少要配备的系统数:每一个导弹最终的结果都是要被打的,如果它后面有一个比它高的导弹,那打它的这个装置无论如何也不能打那个导弹了,所以可以抽象成在已知序列里找最长递减序列的问题。
代码实现
#include<bits/stdc++.h>
using namespace std;
int main(){
const int num =3000;
int f[num],a[num],b[num];
int n = 0;
while(cin>>a[n])
{
n++;
}
//(1)最多能拦截的导弹数
//f[i]第i个位置最长不上升字节序列长度
int num_f = 0;
for(int i = 0;i < n;i++)
{
f[i] = 1;
for(int j = 0;j < i;j++){
if(a[i] <= a[j])
{
f[i] = max(f[i],f[j]+1);
}
}
num_f = max(num_f,f[i]);
}
//(2)最少要配备的系统数-最长递减子序列
//b[i]第i个位置最最长递减子序列长度
int num_b = 0;
for(int i = 0;i < n;i++)
{
b[i] = 1;
for(int j = 0;j < i;j++){
if(a[i] > a[j])
{
b[i] = max(b[i],b[j]+1);
}
}
num_b = max(num_b,b[i]);
}
cout<<num_f<<endl<<num_b<<endl;
return 0;
}