动态规划_最长递增子序列LIS

导弹拦截

描述

某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。
输入导弹依次飞来的高度(雷达给出的高度数据是不大于 30000 的正整数),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。

输入描述

一行,为导弹依次飞来的高度。

输出描述

两行,分别是最多能拦截的导弹数与要拦截所有导弹最少要配备的系统数。

样例输入

389  207  155  300  299  170  158  65

样例输出

6
2

分析

(1)最多能拦截的导弹数:最长不升子序列

        最长不升序列(Longest Increasing SubsequenceLIS:是指在一个无序的序列中,找到一个子序列使得这个子序列中的元素不升,并且这个子序列的长度最长。

(2)最少要配备的系统数:每一个导弹最终的结果都是要被打的,如果它后面有一个比它高的导弹,那打它的这个装置无论如何也不能打那个导弹了,所以可以抽象成在已知序列里找最长递减序列的问题。

代码实现

#include<bits/stdc++.h>
using namespace std;
int main(){
    const int num =3000;
    int f[num],a[num],b[num];
    int n = 0;
    while(cin>>a[n]) 
    {
        n++;
    }
    //(1)最多能拦截的导弹数
    //f[i]第i个位置最长不上升字节序列长度
    int num_f = 0;
    for(int i = 0;i < n;i++)
    {
        f[i] = 1;
        for(int j = 0;j < i;j++){
            if(a[i] <= a[j])   
            {
                  f[i] = max(f[i],f[j]+1);
            }
              
        }
        num_f = max(num_f,f[i]);
    }
    //(2)最少要配备的系统数-最长递减子序列
     //b[i]第i个位置最最长递减子序列长度
    int num_b = 0;
    for(int i = 0;i < n;i++)
    {
        b[i] = 1;
        for(int j = 0;j < i;j++){
            if(a[i] > a[j]) 
            {
                b[i] = max(b[i],b[j]+1);
            }
        }
        num_b = max(num_b,b[i]);
    }
    cout<<num_f<<endl<<num_b<<endl;
    return 0;
}

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值