一、RDD持久化
1.不采用持久化操作
查看要操作的HDFS文件
以集群模式启动Spark Shell
按照图示进行操作,得RDD4和RDD5
查看RDD4内容,会从RDD1到RDD2到RDD3到RDD4跑一趟
查看RDD4内容,会从RDD1到RDD2到RDD3到RDD4跑一趟
3、采用持久化操作
可以在RDD上使用persist()或cache()方法来标记要持久化的RDD(cache()方法实际上底层调用的是persist()方法)。在第一次行动操作时将对数据进行计算,并缓存在节点的内存中。Spark的缓存是容错的:如果缓存的RDD的任何分区丢失,Spark就会按照该RDD原来的转换过程自动重新计算并缓存。
计算到RDD3时,标记持久化
计算RDD4,就是基于RDD3缓存的数据开始计算,不用从头到尾跑一趟
计算RDD5,就是基于RDD3缓存的数据开始计算,不用从头到尾跑一趟
二、存储级别
package net.cxf.rdd.day05
import org.apache.log4j.{Level, Logger}
import org.apache.spark.storage.StorageLevel
import org.apache.spark.{SparkConf, SparkContext}
import java.awt.SystemTray
object SetStorageLevel {
def main(args: Array[String]): Unit = {
//创建Spark配置对象
val conf = new SparkConf()
.setAppName("SetStorageLevel") //设置应用名称
.setMaster("local[*]") //设置主节点位置(本地调试>
// 基于Spark配置对象创建Spark容器
val sc = new SparkContext(conf)
//去除Spark运行信息
Logger.getLogger("org").setLevel(Level.OFF)
Logger.getLogger("com").setLevel(Level.OFF)
System.setProperty("spark.ui.showConsoleProgress", "false")
Logger.getRootLogger().setLevel(Level.OFF)
//创建RDD
val rdd = sc.textFile("hdfs://master:9000/park/words.txt")
//将rdd标记为持久化,采用默认存储级别- StorageLevel.MEMORY_ONLY
rdd.persist() //无参持久化方法
//对rdd做扁平映射,得到rdd1
val rdd1 = rdd.flatMap(_.split(" "))
//将rdd1持久化都磁盘
rdd1.persist(StorageLevel.DISK_ONLY)
//将rdd1映射成二元组,得到rdd2
val rdd2 = rdd1.map((_, 1))
//将rdd2持久化到内存,溢出的数据持久化到磁盘
rdd2.persist(StorageLevel.MEMORY_AND_DISK)
//第一次行动算子,对标记为持久化的RDD进行不同级别的持久化曹
println("元素个数:" + rdd2.count)
//第二次行动算子,直接利用rdd2的持久化数据进行操作,无须从头进行计算
rdd2.collect.foreach(println)
}
}
查看运行结果