莫烦强化学习笔记整理(四) DQN-part1


DQN-part1)
DQN代码: link.

1、什么是DQN

DQN即:Deep Q Network
是一种融合了神经网络和 Q learning 的方法。

(1) 强化学习与神经网络

在这里插入图片描述
在原本的Qlearning中,我们使用Q表来存储每一个state和 action 所拥有的 Q 值,但随着处理问题的复杂化,过多的state和action占用了太多的存储空间,极大降低了处理效率。

神经网络有以下两种方法使问题变得简单。

输入:状态和动作
过程:神经网络的分析计算
输出:Q值

输入:状态
过程:Qleaning原则计算并选择拥有最大值的动作
输出:Q值

神经网络接受外部的信息, 相当于眼睛鼻子耳朵收集信息, 然后通过大脑加工输出每种动作的值, 最后通过强化学习的方式选择动作。

(2)更新神经网络

基于上面提到的第二种神经网络来分析。
神经网络(NN)的的参数更新就是老的 NN 参数 加学习率 alpha 乘以 Q 现实 和 Q 估计 的差距
在这里插入图片描述

(3)DQN的两大利器

Experience replay

Q learning 是一种 off-policy 离线学习法, 可以学习当前经历的, 也能学习过去经历过的, 甚至是学习别人的经历。所以每次 DQN 更新的时候, 可以随机抽取之前的经历进行学习,打乱了经历之间的相关性, 使得神经网络更新更有效率。

Fixed Q-targets

fixed Q-targets会使用到两个结构相同但参数不同的神经网络, 预测 Q 估计 的神经网络具备最新的参数, 而预测 Q 现实 的神经网络使用的参数是以前的。

这两种提升手段使DQN可以在一些游戏中超越人类。

2、DQN算法更新

算法框架:
Q learning 主框架
记忆库 (用于重复学习)
神经网络计算 Q 值
暂时冻结 q_target 参数 (切断相关性)

DQN 环境交互中最核心的算法如下

def run_maze():
   step = 0    # 用来控制什么时候学习
   for episode in range(300):
       # 初始化环境
       observation = env.reset()

       while True:
           # 刷新环境
           env.render()

           # DQN 根据观测值选择行为
           action = RL.choose_action(observation)

           # 环境根据行为给出下一个 state, reward, 是否终止
           observation_, reward, done = env.step(action)

           # DQN 存储记忆
           RL.store_transition(observation, action, reward, observation_)

           # 控制学习起始时间和频率 (先累积一些记忆再开始学习)
           if (step > 200) and (step % 5 == 0):
               RL.learn()

           # 将下一个 state_ 变为 下次循环的 state
           observation = observation_

           # 如果终止, 就跳出循环
           if done:
               break
           step += 1   # 总步数

   # end of game
   print('game over')
   env.destroy()


if __name__ == "__main__":
   env = Maze()
   RL = DeepQNetwork(env.n_actions, env.n_features,
                     learning_rate=0.01,
                     reward_decay=0.9,
                     e_greedy=0.9,
                     replace_target_iter=200,  # 每 200 步替换一次 target_net 的参数
                     memory_size=2000, # 记忆上限
                     # output_graph=True   # 是否输出 tensorboard 文件
                     )
   env.after(100, run_maze)
   env.mainloop()
   RL.plot_cost()  # 观看神经网络的误差曲线

3、 建立DQN神经网络框架

使用 Tensorflow 实现 DQN, 搭建两个神经网络。
target_net 用于预测 q_target 值, 不会及时更新参数。
eval_net 用于预测 q_eval,拥有最新的神经网络参数。
两个神经网络结构是完全一样的, 只是参数不同。
在这里插入图片描述
实现代码:

class DeepQNetwork:
  # 建立神经网络
    def _build_net(self):
        # -------------- 创建 eval 神经网络, 及时提升参数 --------------
        self.s = tf.placeholder(tf.float32, [None, self.n_features], name='s')  # 用来接收 observation
        self.q_target = tf.placeholder(tf.float32, [None, self.n_actions], name='Q_target') # 用来接收 q_target 的值, 这个之后会通过计算得到
        with tf.variable_scope('eval_net'):
            # c_names(collections_names) 是在更新 target_net 参数时会用到
            c_names, n_l1, w_initializer, b_initializer = \
                ['eval_net_params', tf.GraphKeys.GLOBAL_VARIABLES], 10, \
                tf.random_normal_initializer(0., 0.3), tf.constant_initializer(0.1)  # config of layers

            # eval_net 的第一层. collections 是在更新 target_net 参数时会用到
            with tf.variable_scope('l1'):
                w1 = tf.get_variable('w1', [self.n_features, n_l1], initializer=w_initializer, collections=c_names)
                b1 = tf.get_variable('b1', [1, n_l1], initializer=b_initializer, collections=c_names)
                l1 = tf.nn.relu(tf.matmul(self.s, w1) + b1)

            # eval_net 的第二层. collections 是在更新 target_net 参数时会用到
            with tf.variable_scope('l2'):
                w2 = tf.get_variable('w2', [n_l1, self.n_actions], initializer=w_initializer, collections=c_names)
                b2 = tf.get_variable('b2', [1, self.n_actions], initializer=b_initializer, collections=c_names)
                self.q_eval = tf.matmul(l1, w2) + b2

        with tf.variable_scope('loss'): # 求误差
            self.loss = tf.reduce_mean(tf.squared_difference(self.q_target, self.q_eval))
        with tf.variable_scope('train'):    # 梯度下降
            self._train_op = tf.train.RMSPropOptimizer(self.lr).minimize(self.loss)

        # ---------------- 创建 target 神经网络, 提供 target Q ---------------------
        self.s_ = tf.placeholder(tf.float32, [None, self.n_features], name='s_')    # 接收下个 observation
        with tf.variable_scope('target_net'):
            # c_names(collections_names) 是在更新 target_net 参数时会用到
            c_names = ['target_net_params', tf.GraphKeys.GLOBAL_VARIABLES]

            # target_net 的第一层. collections 是在更新 target_net 参数时会用到
            with tf.variable_scope('l1'):
                w1 = tf.get_variable('w1', [self.n_features, n_l1], initializer=w_initializer, collections=c_names)
                b1 = tf.get_variable('b1', [1, n_l1], initializer=b_initializer, collections=c_names)
                l1 = tf.nn.relu(tf.matmul(self.s_, w1) + b1)

            # target_net 的第二层. collections 是在更新 target_net 参数时会用到
            with tf.variable_scope('l2'):
                w2 = tf.get_variable('w2', [n_l1, self.n_actions], initializer=w_initializer, collections=c_names)
                b2 = tf.get_variable('b2', [1, self.n_actions], initializer=b_initializer, collections=c_names)
                self.q_next = tf.matmul(l1, w2) + b2

4、进行DQN思维决策

# 上次的内容
# 建立神经网络
def _build_net(self):

# 这次的内容:
# 初始值
def __init__(self):

# 存储记忆
def store_transition(self, s, a, r, s_):

# 选行为
def choose_action(self, observation):

# 学习
def learn(self):

# 看看学习效果 (可选)
def plot_cost(self):

(1)初始值

class DeepQNetwork:
    def __init__(
            self,
            n_actions,
            n_features,
            learning_rate=0.01,
            reward_decay=0.9,
            e_greedy=0.9,
            replace_target_iter=300,
            memory_size=500,
            batch_size=32,
            e_greedy_increment=None,
            output_graph=False,
    ):
        self.n_actions = n_actions
        self.n_features = n_features
        self.lr = learning_rate
        self.gamma = reward_decay
        self.epsilon_max = e_greedy     # epsilon 的最大值
        self.replace_target_iter = replace_target_iter  # 更换 target_net 的步数
        self.memory_size = memory_size  # 记忆上限
        self.batch_size = batch_size    # 每次更新时从 memory 里面取多少记忆出来
        self.epsilon_increment = e_greedy_increment # epsilon 的增量
        self.epsilon = 0 if e_greedy_increment is not None else self.epsilon_max # 是否开启探索模式, 并逐步减少探索次数

        # 记录学习次数 (用于判断是否更换 target_net 参数)
        self.learn_step_counter = 0

        # 初始化全 0 记忆 [s, a, r, s_]
        self.memory = np.zeros((self.memory_size, n_features*2+2)) # 和视频中不同, 因为 pandas 运算比较慢, 这里改为直接用 numpy

        # 创建 [target_net, evaluate_net]
        self._build_net()

        # 替换 target net 的参数
        t_params = tf.get_collection('target_net_params')  # 提取 target_net 的参数
        e_params = tf.get_collection('eval_net_params')   # 提取  eval_net 的参数
        self.replace_target_op = [tf.assign(t, e) for t, e in zip(t_params, e_params)] # 更新 target_net 参数

        self.sess = tf.Session()

        # 输出 tensorboard 文件
        if output_graph:
            # $ tensorboard --logdir=logs
            tf.summary.FileWriter("logs/", self.sess.graph)

        self.sess.run(tf.global_variables_initializer())
        self.cost_his = []  # 记录所有 cost 变化, 用于最后 plot 出来观看

(2)存储行为

记录下所有经历过的步, 这些步可以进行反复的学习, 所以是一种 off-policy 方法

class DeepQNetwork:
    def __init__(self):
        ...
    def store_transition(self, s, a, r, s_):
        if not hasattr(self, 'memory_counter'):
            self.memory_counter = 0

        # 记录一条 [s, a, r, s_] 记录
        transition = np.hstack((s, [a, r], s_))

        # 总 memory 大小是固定的, 如果超出总大小, 旧 memory 就被新 memory 替换
        index = self.memory_counter % self.memory_size
        self.memory[index, :] = transition # 替换过程

        self.memory_counter += 1

(3)选行为

class DeepQNetwork:
    def __init__(self):
        ...
    def store_transition(self, s, a, r, s_):
        ...
    def choose_action(self, observation):
        # 统一 observation 的 shape (1, size_of_observation)
        observation = observation[np.newaxis, :]

        if np.random.uniform() < self.epsilon:
            # 让 eval_net 神经网络生成所有 action 的值, 并选择值最大的 action
            actions_value = self.sess.run(self.q_eval, feed_dict={self.s: observation})
            action = np.argmax(actions_value)
        else:
            action = np.random.randint(0, self.n_actions)   # 随机选择
        return action

(4)学习

涉及了 target_net 和 eval_net 的交互使用.

class DeepQNetwork:
    def __init__(self):
        ...
    def store_transition(self, s, a, r, s_):
        ...
    def choose_action(self, observation):
        ...
    def _replace_target_params(self):
        ...
    def learn(self):
        # 检查是否替换 target_net 参数
        if self.learn_step_counter % self.replace_target_iter == 0:
            self.sess.run(self.replace_target_op)
            print('\ntarget_params_replaced\n')

        # 从 memory 中随机抽取 batch_size 这么多记忆
        if self.memory_counter > self.memory_size:
            sample_index = np.random.choice(self.memory_size, size=self.batch_size)
        else:
            sample_index = np.random.choice(self.memory_counter, size=self.batch_size)
        batch_memory = self.memory[sample_index, :]

        # 获取 q_next (target_net 产生了 q)q_eval(eval_net 产生的 q)
        q_next, q_eval = self.sess.run(
            [self.q_next, self.q_eval],
            feed_dict={
                self.s_: batch_memory[:, -self.n_features:],
                self.s: batch_memory[:, :self.n_features]
            })

        # 下面这几步十分重要. q_next, q_eval 包含所有 action 的值,
        # 而我们需要的只是已经选择好的 action 的值, 其他的并不需要.
        # 所以我们将其他的 action 值全变成 0, 将用到的 action 误差值 反向传递回去, 作为更新凭据.
        # 这是我们最终要达到的样子, 比如 q_target - q_eval = [1, 0, 0] - [-1, 0, 0] = [2, 0, 0]
        # q_eval = [-1, 0, 0] 表示这一个记忆中有我选用过 action 0, 而 action 0 带来的 Q(s, a0) = -1, 所以其他的 Q(s, a1) = Q(s, a2) = 0.
        # q_target = [1, 0, 0] 表示这个记忆中的 r+gamma*maxQ(s_) = 1, 而且不管在 s_ 上我们取了哪个 action,
        # 我们都需要对应上 q_eval 中的 action 位置, 所以就将 1 放在了 action 0 的位置.

        # 下面也是为了达到上面说的目的, 不过为了更方面让程序运算, 达到目的的过程有点不同.
        # 是将 q_eval 全部赋值给 q_target, 这时 q_target-q_eval 全为 0,
        # 不过 我们再根据 batch_memory 当中的 action 这个 column 来给 q_target 中的对应的 memory-action 位置来修改赋值.
        # 使新的赋值为 reward + gamma * maxQ(s_), 这样 q_target-q_eval 就可以变成我们所需的样子.
        # 具体在下面还有一个举例说明.

        q_target = q_eval.copy()
        batch_index = np.arange(self.batch_size, dtype=np.int32)
        eval_act_index = batch_memory[:, self.n_features].astype(int)
        reward = batch_memory[:, self.n_features + 1]

        q_target[batch_index, eval_act_index] = reward + self.gamma * np.max(q_next, axis=1)

        /*""
        假如在这个 batch 中, 我们有2个提取的记忆, 根据每个记忆可以生产3个 action 的值:
        q_eval =
        [[1, 2, 3],
         [4, 5, 6]]

        q_target = q_eval =
        [[1, 2, 3],
         [4, 5, 6]]

        然后根据 memory 当中的具体 action 位置来修改 q_target 对应 action 上的值:
        比如在:
            记忆 0 的 q_target 计算值是 -1, 而且我用了 action 0;
            记忆 1 的 q_target 计算值是 -2, 而且我用了 action 2:
        q_target =
        [[-1, 2, 3],
         [4, 5, -2]]

        所以 (q_target - q_eval) 就变成了:
        [[(-1)-(1), 0, 0],
         [0, 0, (-2)-(6)]]

        最后我们将这个 (q_target - q_eval) 当成误差, 反向传递会神经网络.
        所有为 0 的 action 值是当时没有选择的 action, 之前有选择的 action 才有不为0的值.
        我们只反向传递之前选择的 action 的值,
        ""*/

        # 训练 eval_net
        _, self.cost = self.sess.run([self._train_op, self.loss],
                                     feed_dict={self.s: batch_memory[:, :self.n_features],
                                                self.q_target: q_target})
        self.cost_his.append(self.cost) # 记录 cost 误差

        # 逐渐增加 epsilon, 降低行为的随机性
        self.epsilon = self.epsilon + self.epsilon_increment if self.epsilon < self.epsilon_max else self.epsilon_max
        self.learn_step_counter += 1

(5)看学习效果

class DeepQNetwork:
    def __init__(self):
        ...
    def store_transition(self, s, a, r, s_):
        ...
    def choose_action(self, observation):
        ...
    def _replace_target_params(self):
        ...
    def learn(self):
        ...
    def plot_cost(self):
        import matplotlib.pyplot as plt
        plt.plot(np.arange(len(self.cost_his)), self.cost_his)
        plt.ylabel('Cost')
        plt.xlabel('training steps')
        plt.show()

cost曲线并不是平滑下降的, 因为 DQN 中的 input 数据是一步步改变的, 而且会根据学习情况, 获取到不同的数据
在这里插入图片描述

  • 1
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值