吴恩达深度学习课程笔记——梯度下降算法和向量化

逻辑回归中的梯度下降

梯度下降法的作用是:在测试集上,通过最小化代价函数 J ( w , b ) J(w,b) J(w,b)来训练的参数 w w w b b b
w : = w − a ∂ J ( w , b ) ∂ w w:=w-a\frac{\partial J(w,b)}{\partial w} w:=wawJ(w,b)
b : = w − a ∂ J ( w , b ) ∂ b b:=w-a\frac{\partial J(w,b)}{\partial b} b:=wabJ(w,b)
: = := :=表示更新参数
a a a 表示学习率(learning rate),用来控制步长(step
∂ \partial 表示求偏导符号
∂ J ( w , b ) ∂ w \frac{\partial J(w,b)}{\partial w} wJ(w,b) J ( w , b ) J(w,b) J(w,b) w w w 求偏导,代码使用 d w dw dw 表示
∂ J ( w , b ) ∂ b \frac{\partial J(w,b)}{\partial b} bJ(w,b) J ( w , b ) J(w,b) J(w,b) b b b 求偏导,代码使用 d b db db 表示

单样本梯度下降

回想逻辑回归的公式定义:
z = w T x + b z={{w}^{T}}x+b z=wTx+b
y ^ = a = σ ( z ) = 1 1 + e − z \hat{y}=a=\sigma (z)=\frac{1}{1+{{e}^{-z}}} y^=a=σ(z)=1+ez1
损失函数: L ( y ^ ( i ) , y ( i ) ) = − y ( i ) log ⁡ y ^ ( i ) − ( 1 − y ( i ) ) log ⁡ ( 1 − y ^ ( i ) ) L( {{{\hat{y}}}^{(i)}},{{y}^{(i)}})=-{{y}^{(i)}}\log {{\hat{y}}^{(i)}}-(1-{{y}^{(i)}})\log (1-{{\hat{y}}^{(i)}}) L(y^(i),y(i))=y(i)logy^(i)(1y(i))log(1y^(i))
代价函数: J ( w , b ) = 1 m ∑ i m L ( y ^ ( i ) , y ( i ) ) J\left( w,b \right)=\frac{1}{m}\sum\nolimits_{i}^{m}{L( {{{\hat{y}}}^{(i)}},{{y}^{(i)}})} J(w,b)=m1imL(y^(i),y(i))
假设样本只有两个特征 x 1 {{x}_{1}} x1 x 2 {{x}_{2}} x2,只考虑一个样本,为了计算 z z z,我们需要输入参数 w 1 {{w}_{1}} w1 w 2 {{w}_{2}} w2 b b b,还有特征值 x 1 {{x}_{1}} x1 x 2 {{x}_{2}} x2
z = w 1 x 1 + w 2 x 2 + b z={{w}_{1}}{{x}_{1}}+{{w}_{2}}{{x}_{2}}+b z=w1x1+w2x2+b
L ( a , y ) = − ( y log ⁡ ( a ) + ( 1 − y ) log ⁡ ( 1 − a ) ) L(a,y)=-(y\log (a)+(1-y)\log (1-a)) L(a,y)=(ylog(a)+(1y)log(1a))
其中 a a a是逻辑回归的输出, y y y是样本的标签值。
根据导数链式法则进行反向传播
d a = d L ( a , y ) d a = − y / a + ( 1 − y ) / ( 1 − a ) da=\frac{dL(a,y)}{da}=-y/a+(1-y)/(1-a) da=dadL(a,y)=y/a+(1y)/(1a)
d a d z = a ⋅ ( 1 − a ) \frac{da}{dz}=a\cdot (1-a) dzda=a(1a)
所以:
d z = d L ( a , y ) d z = ( d L d a ) ⋅ ( d a d z ) = a − y dz=\frac{dL(a,y)}{dz}=(\frac{dL}{da})\cdot (\frac{da}{dz})=a-y dz=dzdL(a,y)=(dadL)(dzda)=ay
d w 1 = ∂ L ∂ w 1 = x 1 ⋅ d z d{{w}_{1}}=\frac{\partial L}{\partial {{w}_{1}}}={{x}_{1}}\cdot dz dw1=w1L=x1dz
d w 2 = ∂ L ∂ w 2 = x 2 ⋅ d z d{{w}_{2}}=\frac{\partial L}{\partial {{w}_{2}}}={{x}_{2}}\cdot dz dw2=w2L=x2dz
d b = d z db=dz db=dz
更新 w 1 = w 1 − a d w 1 {{w}_{1}}={{w}_{1}}-a d{{w}_{1}} w1=w1adw1
更新 w 2 = w 2 − a d w 2 {{w}_{2}}={{w}_{2}}-a d{{w}_{2}} w2=w2adw2
更新 b = b − α d b b=b-\alpha db b=bαdb
这就是关于单个样本实例的梯度下降算法中参数更新一次的步骤。

向量化

向量化是非常基础的去除代码中for循环的艺术,在深度学习安全领域、深度学习实践中是提高代码运行速度非常关键的技巧。

python中向量化使用的常用指令
import numpy as np 
w= np.array(n(x), 1) 
u=np.zeros(n(x), 1)
c= np.dot(a,b)   #a和b矩阵乘法
u=np.log         #计算对数函数($log$)
u=np.abs()       #计算数据的绝对值
u=np.maximum(v, 0)   #按元素计算$v$中每个元素和和0相比的最大值

矩阵乘法的定义就是: u i = ∑ j A ij v i u_{i} =\sum_{j}^{}{A_{\text{ij}}v_{i}} ui=jAijvi,这取决于你怎么定义 u i u_{i} ui值。同样使用非向量化实现, u = n p . z e r o s ( n , 1 ) u=np.zeros(n,1) u=np.zeros(n,1), 并且通过两层循环 f o r ( i ) : f o r ( j ) : for(i):for(j): for(i):for(j):,得到 u [ i ] = u [ i ] + A [ i ] [ j ] ∗ v [ j ] u[i]=u[i]+A[i][j]*v[j] u[i]=u[i]+A[i][j]v[j] 。现在就有了 i i i j j j 的两层循环,这就是非向量化。向量化方式就可以用 u = n p . d o t ( A , v ) u=np.dot(A,v) u=np.dot(A,v),右边这种向量化实现方式,消除了两层循环使得代码运行速度更快。

多样本梯度下降

z = w T x + b z={{w}^{T}}x+b z=wTx+b w w w x x x都是列向量

z = w T X + b = n p . d o t ( w . T , X ) + b z= w^{T}X + b = np.dot( w.T,X)+b z=wTX+b=np.dot(w.T,X)+b
A = σ ( Z ) A = \sigma( Z ) A=σ(Z)
d Z = A − Y dZ = A - Y dZ=AY
d w = 1 m ∗ X ∗ d z T   {{dw} = \frac{1}{m}*X*dz^{T}\ } dw=m1XdzT 
d b = 1 m ∗ n p . s u m ( d Z ) db= \frac{1}{m}*np.sum( dZ) db=m1np.sum(dZ)
w : = w − a ∗ d w w: = w - a*dw w:=wadw
b : = b − a ∗ d b b: = b - a*db b:=badb
利用前五个公式完成了前向和后向传播,实现了对所有训练样本进行预测和求导,利用后两个公式,梯度下降更新参数。不使用for循环,通过一次迭代实现一次梯度下降,但如果你希望多次迭代进行梯度下降,那么仍然需要for循环,放在最外层。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值