Description
著名的格雷码是指2n个不同n位二进制数(即0~2n-1,不足n位在前补零)的一个排列,这个排列满足相邻的两
个二进制数的n位数字中最多只有一个数字不同(例如003和001就有一个数位不同,而003和030有两个数位不同,
不符合条件)。例如n=2时,(00,01,11,10)就是一个满足条件的格雷码。 所谓超级格雷码就是指Bn个不同的n位B
进制数的排列满足上面的条件。 任务:给出n和B(2≤B≤36, 1≤Bn≤65535),求一个满足条件的格雷码。对于
大于9的数位用A~Z表示(10~35)。
Input
只有一行,为两个整数n和B。
Output
一共Bn个行,每行一个B进制数,表示你所求得的符合条件的排列
Sample Input
2 2
Sample Output
00
01
11
10
01
11
10
HINT
请不要提交此题...
【解析】
当第i个数字为偶数时,第i-1个数是从小到大排列的。相反,当第i个数字为奇数时,第i-1个数是从大到小排列的。
#include<cstdio>
#include<cstring>
using namespace std;
int n,b,a[20];
void dfs(int k,int t)//k表示要k位数,t=1表示单数,t=0表示偶数
{
if(k==0)
{
for(int i=1;i<=n;i++)//我们是从k~1选的所以要倒着输出,又因为bzoj没有spj,所以又倒过来输出
{
if(a[i]<10) printf("%d",a[i]);
else printf("%c",a[i]-10+'A');//大于9要用A~Z表示
}
printf("\n");
return ;
}
if(t==0)
{
for(int i=b-1;i>=0;i--)//从大到小
{
a[k]=i;
if(i%2==1) dfs(k-1,1);
else dfs(k-1,0);
}
}
else
{
for(int i=0;i<b;i++)//从小到大
{
a[k]=i;
if(i%2==1) dfs(k-1,0);
else dfs(k-1,1);
}
}
}
int main()
{
scanf("%d%d",&n,&b);
dfs(n,1);
return 0;
}