title: 专升本高数笔记 第三章:导数的应用
专升本高数笔记,高等应用数学笔记。阿洛学长笔记 love ttz
第三章:导数的应用
知识导图
一、微分中值定理与洛必达法则(阿洛学长)
(1)微分中值定理的应用:
1.罗尔中值定理
[高等数学14]罗尔中值定理——微分中值定理1_哔哩哔哩_bilibili
定理1
存在该函数的区间内k(斜略为)=0
判断连续还有可导,有最大值和最小值 抹一点的导数为0
内容:
几何意义:
(3)拉格朗日中值定理
拉格朗日中值定理[高等数学15]_哔哩哔哩_bilibili
练习:
利用罗尔中值定理证明方程根的存在性的基本步骤:
(1)找到函数值为0的点,以函数值为0时的自变量为区间端点,划分区间;
(2)根据划分出的区间个数,确定方程根的最少个数;
(3)根据方程的次数确定方程根的最多个数,最终确定方程根的个数.
(3)洛必达法则的应用:
1.洛必达法则的内容
二、导数在研究函数问题中的应用(阿洛学长)
(1)知识点1 导数在研究函数单调性、极值与最值问题中的应用
1.函数的单调性
2.函数的值
3.函数的最值
函数极值与最值的区别
(1)极值是一个局部概念,极值可有多个;最值是针对整个指定区间而言,最值若存在,则唯一.
(2)极大值未必比极小值小,但是最大值一定比最小值大.
(3)极值点只可能出现在整个区间内部,而不会出现在区间端点处,而最值则可以出现在整个区间的任何部位,包括区间端点处.
在求函数的分界点时需要注意,函数的驻点、不可导点有可能不在定义域内,此时需要根据函数的定义域作出取舍.
在求函数的极值时,需要通过判断函数在每个分界点左右两侧的函数单调性来确定,不能通过直接计算驻点处函数值后比较大小得出,函数的极大值不一定比极小值大,极小值也不一定比极大值小.
(2)知识点2 导数在研究曲线凹凸性、渐近线问题中的应用
1.曲线的凹凸性与拐点