题目:
小易总是感觉饥饿,所以作为章鱼的小易经常出去寻找贝壳吃。
最开始小易在一个初始位置x_0。对于小易所处的当前位置x,他只能通过神秘的力量移动到 4 * x + 3或者8 * x + 7。因为使用神秘力量要耗费太多体力,所以它只能使用神秘力量最多100,000次。
贝壳总生长在能被1,000,000,007整除的位置(比如:位置0,位置1,000,000,007,位置2,000,000,014等)。
小易需要你帮忙计算最少需要使用多少次神秘力量就能吃到贝壳。
输入描述:
输入一个初始位置x_0,范围在1到1,000,000,006
输出描述:
输出小易最少需要使用神秘力量的次数,如果使用次数使用完还没找到贝壳,则输出-1
输入例子:
125000000
输出例子:
1
分析:
考虑正向枚举,直觉上,直接放弃——对无解的情况,你得每一步都考虑展开,每一步展开就2个分支,10万步最多2^100000个分支。
还有一个问题:位置的下标还是指数级增长的(x->x*4+3或x*8+7)
注意到,贝壳总生长在能被1,000,000,007(之后写作1e9+7)整除的位置。利用这一点,考虑同余的性质,把下标用MOD(1e9+7)后的结果表示(因为我根本不在乎最后具体数值,我只在意,下标是不是1e9+7的倍数)
用哈希表存储已访问的点,使用队列存储待访问的点,BFS广度优先遍历
其中乘法可以用移位代替。
答案:
#include <iostream>
#include <map>
#include <queue>
using namespace std;
#define MOD 1000000007L
#define MAX 100000
int main(){
map<long,int> vist;//哈希表
long x;
while (cin>>x) {
queue<long> q;//队列
q.push(x);
vist[x]=1;
long xx=1;
while (q.size()) {
x = q.front();
q.pop();
if (x==0)
break;
if (vist[x] > MAX)
continue;
xx = ((x<<2)+3) % MOD;
if (vist.find(xx) == vist.end()) {
q.push(xx);
vist[xx] = vist[x]+1;
}
xx = ((x<<3)+7) % MOD;
if (vist.find(xx) == vist.end()){
q.push(xx);
vist[xx] = vist[x]+1;
}
}
cout<<(q.size() ? vist[x]-1 : -1)<<endl;
}
return 0;
}