算法——二叉树的遍历

0. 二叉树定义

 Definition for a binary tree node.
  public class TreeNode {
      int val;
      TreeNode left;
      TreeNode right;
      TreeNode() {}
      TreeNode(int val) { this.val = val; }
      TreeNode(int val, TreeNode left, TreeNode right) {
          this.val = val;
          this.left = left;
          this.right = right;
      }
  }

1. 前序遍历——递归

	public List<Integer> preorderTraversal(TreeNode root) {
		List<Integer> list = new ArrayList<>();
		return pre(root, list);
	}
	public List<Integer> pre(TreeNode root, List<Integer> list) {
		if(root == null)
			return list;
		list.add(root.val);
		pre(root.left, list);
		pre(root.right, list);
		return list;
	}

1. 前序遍历——迭代

  • 使用栈,先进后出

  • 如果先左进栈,再后进栈会出现以下后果
    在这里插入图片描述

  • 我们要利用递归的思路,需要先放右节点进栈,再放左节点进栈
    在这里插入图片描述

	public List<Integer> preorderTraversal(TreeNode root) {
		List<Integer> list = new ArrayList<>();
		Deque<TreeNode> stack = new ArrayDeque<>();
		if(root == null)
			return list;
		stack.push(root);
		while(!stack.isEmpty()) {
			TreeNode temp = stack.pop();
			list.add(temp.val);
			if(temp.right != null)				//为什么先right后left,因为使用的是栈(先进后出)
				stack.push(temp.right);
			if(temp.left != null)
				stack.push(temp.left);
		}
		return list;
	}
	

2. 中序遍历——递归

	public List<Integer> inorderTraversal(TreeNode root) {
		List<Integer> list = new ArrayList<>();
		return inorder(root, list);
	}
	public List<Integer> inorder(TreeNode root, List<Integer> list) {
		if(root == null)
			return list;
		inorder(root.left, list);
		list.add(root.val);
		inorder(root.right, list);
		return list;
	}

2. 中序遍历——迭代

	public List<Integer> inorderTraversal(TreeNode root) {
		List<Integer> list = new ArrayList<>();
		Deque<TreeNode> stack = new ArrayDeque<>();
		TreeNode cur = root;
		while(cur != null || !stack.isEmpty()) {
			if(cur != null) { //一直向left走,直到头
				stack.push(cur);
				cur = cur.left;
			} else { //如果没right就添加父节点然后再找父节点的rigth
				cur = stack.pop();
				list.add(cur.val);
				cur = cur.right;
			}
		}
		return list;
	}

3. 后序遍历——递归

	public List<Integer> postorderTraversal(TreeNode root) {
		List<Integer> list = new ArrayList<>();
		return post(root, list);
	}
	public List<Integer> post(TreeNode root, List<Integer> list) {
		if(root == null)
			return list;
		post(root.left, list);
		post(root.right, list);
		list.add(root.val);
		return list;
	}

3. 后序遍历——迭代

法一:

  • 中-右-左 遍历后,再进行反转得到: 左-右-中
    在这里插入图片描述
	public List<Integer> postorderTraversal(TreeNode root) {
		List<Integer> list = new ArrayList<>();
		Deque<TreeNode> stack = new ArrayDeque<>();
		if(root == null)
			return list;
		stack.push(root);
		while(!stack.isEmpty()) {
			TreeNode temp = stack.pop();
			list.add(temp.val);			//list.add(0,node.val);
			if(temp.left != null)
				stack.push(temp.left);
			if(temp.right != null)
				stack.push(temp.right);
		}
		Collections.reverse(list);		//去掉Collections.reverse(list);
		return list;					//注释所用方法也是OK的
	}

法二:

  • 常规遍历左右根,和前序、中序方法一类似
class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> res = new ArrayList<Integer>();
        if (root == null) {
            return res;
        }

        Deque<TreeNode> stack = new LinkedList<TreeNode>();
        TreeNode prev = null;
        while (root != null || !stack.isEmpty()) {
            while (root != null) {		//左节点全压入栈中
                stack.push(root);
                root = root.left;
            }
            root = stack.pop();			//弹出root = 左节点叶子节点
            if (root.right == null || root.right == prev) {
                res.add(root.val);
                prev = root;		//标记一个根节点的右子节点,表名该根节点的右子节点已经被add过了,既然后序遍历完成了根节点的左、右子节点add操作,就可以继续add根节点本身了
                root = null;
            } else {
                stack.push(root);
                root = root.right;
            }
        }
        return res;
    }
}

4. 层序遍历

在这里插入图片描述

class Solution {
    public List<List<Integer>> levelOrder(TreeNode root) {
        if(root == null)
            return new ArrayList<>();
        List<List<Integer>> list = new ArrayList<>();
        Queue<TreeNode> queue = new LinkedList<>();
        queue.add(root);
        while(!queue.isEmpty()){
            int size = queue.size();
            List<Integer> list2 = new ArrayList<>();
            while(size > 0){
                TreeNode node = queue.poll();
                list2.add(node.val);
                if(node.left != null)
                    queue.offer(node.left);
                if(node.right != null)
                    queue.offer(node.right);
                size--;
            }
            list.add(list2);
        }
        return list;
    }
}

5. 之字形遍历

参考层序:

import java.util.*;

/*
 * public class TreeNode {
 *   int val = 0;
 *   TreeNode left = null;
 *   TreeNode right = null;
 * }
 */

public class Solution {
    public List<List<Integer>> zigzagLevelOrder(TreeNode root) {
        List<List<Integer>> res = new ArrayList<>();
        if (root == null) 
        	return res;
        	
        Queue<TreeNode> queue = new LinkedList<TreeNode>();
        queue.offer(root);
        while(!queue.isEmpty()){
            ArrayList<Integer> list= new ArrayList<Integer>();//存储每一层节点
            //遍历当前层的节点 注意不能反着写
            for(int i= queue.size();i>0;i--){
                TreeNode temp = queue.poll();
                //res.size()+1:当前的层数,从1开始
                if((res.size() + 1) % 2 !=0) 		
                    list.add(temp.val);		//奇数层,头插
                else
                    list.add(0,temp.val);	//偶数层,尾插
                if(temp.left!=null)
                    queue.add(temp.left);
                if(temp.right!=null)
                    queue.add(temp.right);
            }
            res.add(list);
                        
        }
        return res; 
    }
}

6. 二叉树右视图

BFS:

  • 利用 BFS 进行层次遍历,记录下每层的最后一个元素。
  • 时间复杂度: O(N),每个节点都入队出队了 1 次。
  • 空间复杂度: O(N),使用了额外的队列空间。
class Solution {
    public List<Integer> rightSideView(TreeNode root) {
        List<Integer> res = new ArrayList<>();
        if (root == null) {
            return res;
        }
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);
        while (!queue.isEmpty()) {
            int size = queue.size();
            for (int i = 0; i < size; i++) {
                TreeNode node = queue.poll();
                if (node.left != null) {
                    queue.offer(node.left);
                }
                if (node.right != null) {
                    queue.offer(node.right);`在这里插入代码片`
                }
                if (i == size - 1) {  //将当前层的最后一个节点放入结果列表
                    res.add(node.val);
                }
            }
        }
        return res;
    }
}

DFS:

  • 思路: 我们按照 「根结点 -> 右子树 -> 左子树」 的顺序访问,就可以保证每层都是最先访问最右边的节点的。
    (与先序遍历 「根结点 -> 左子树 -> 右子树」 正好相反,先序遍历每层最先访问的是最左边的节点)
  • 时间复杂度: O(N),每个节点都访问了 1 次。
  • 空间复杂度: O(N),因为这不是一棵平衡二叉树,二叉树的深度最少是logN, 最坏的情况下会退化成一条链表,深度就是 N,因此递归时使用的栈空间是O(N) 的。
class Solution {
    List<Integer> res = new ArrayList<>();

    public List<Integer> rightSideView(TreeNode root) {
        dfs(root, 0); // 从根节点开始访问,根节点深度是0
        return res;
    }

    private void dfs(TreeNode root, int depth) {
        if (root == null) {
            return;
        }
        // 先访问 当前节点,再递归地访问 右子树 和 左子树。
         // 如果当前节点所在深度还没有出现在res里,说明在该深度下当前节点是第一个被访问的节点,因此将当前节点加入res中。
        if (depth == res.size()) {  
            res.add(root.val);
        }
        depth++;
        dfs(root.right, depth);
        dfs(root.left, depth);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yawn__

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值