0. 二叉树定义
Definition for a binary tree node.
public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode() {}
TreeNode(int val) { this.val = val; }
TreeNode(int val, TreeNode left, TreeNode right) {
this.val = val;
this.left = left;
this.right = right;
}
}
1. 前序遍历——递归
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> list = new ArrayList<>();
return pre(root, list);
}
public List<Integer> pre(TreeNode root, List<Integer> list) {
if(root == null)
return list;
list.add(root.val);
pre(root.left, list);
pre(root.right, list);
return list;
}
1. 前序遍历——迭代
-
使用栈,先进后出
-
如果先左进栈,再后进栈会出现以下后果
-
我们要利用递归的思路,需要先放右节点进栈,再放左节点进栈
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> list = new ArrayList<>();
Deque<TreeNode> stack = new ArrayDeque<>();
if(root == null)
return list;
stack.push(root);
while(!stack.isEmpty()) {
TreeNode temp = stack.pop();
list.add(temp.val);
if(temp.right != null) //为什么先right后left,因为使用的是栈(先进后出)
stack.push(temp.right);
if(temp.left != null)
stack.push(temp.left);
}
return list;
}
2. 中序遍历——递归
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> list = new ArrayList<>();
return inorder(root, list);
}
public List<Integer> inorder(TreeNode root, List<Integer> list) {
if(root == null)
return list;
inorder(root.left, list);
list.add(root.val);
inorder(root.right, list);
return list;
}
2. 中序遍历——迭代
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> list = new ArrayList<>();
Deque<TreeNode> stack = new ArrayDeque<>();
TreeNode cur = root;
while(cur != null || !stack.isEmpty()) {
if(cur != null) { //一直向left走,直到头
stack.push(cur);
cur = cur.left;
} else { //如果没right就添加父节点然后再找父节点的rigth
cur = stack.pop();
list.add(cur.val);
cur = cur.right;
}
}
return list;
}
3. 后序遍历——递归
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> list = new ArrayList<>();
return post(root, list);
}
public List<Integer> post(TreeNode root, List<Integer> list) {
if(root == null)
return list;
post(root.left, list);
post(root.right, list);
list.add(root.val);
return list;
}
3. 后序遍历——迭代
法一:
- 中-右-左 遍历后,再进行反转得到: 左-右-中
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> list = new ArrayList<>();
Deque<TreeNode> stack = new ArrayDeque<>();
if(root == null)
return list;
stack.push(root);
while(!stack.isEmpty()) {
TreeNode temp = stack.pop();
list.add(temp.val); //list.add(0,node.val);
if(temp.left != null)
stack.push(temp.left);
if(temp.right != null)
stack.push(temp.right);
}
Collections.reverse(list); //去掉Collections.reverse(list);
return list; //注释所用方法也是OK的
}
法二:
- 常规遍历左右根,和前序、中序方法一类似
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<Integer>();
if (root == null) {
return res;
}
Deque<TreeNode> stack = new LinkedList<TreeNode>();
TreeNode prev = null;
while (root != null || !stack.isEmpty()) {
while (root != null) { //左节点全压入栈中
stack.push(root);
root = root.left;
}
root = stack.pop(); //弹出root = 左节点叶子节点
if (root.right == null || root.right == prev) {
res.add(root.val);
prev = root; //标记一个根节点的右子节点,表名该根节点的右子节点已经被add过了,既然后序遍历完成了根节点的左、右子节点add操作,就可以继续add根节点本身了
root = null;
} else {
stack.push(root);
root = root.right;
}
}
return res;
}
}
4. 层序遍历
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
if(root == null)
return new ArrayList<>();
List<List<Integer>> list = new ArrayList<>();
Queue<TreeNode> queue = new LinkedList<>();
queue.add(root);
while(!queue.isEmpty()){
int size = queue.size();
List<Integer> list2 = new ArrayList<>();
while(size > 0){
TreeNode node = queue.poll();
list2.add(node.val);
if(node.left != null)
queue.offer(node.left);
if(node.right != null)
queue.offer(node.right);
size--;
}
list.add(list2);
}
return list;
}
}
5. 之字形遍历
参考层序:
import java.util.*;
/*
* public class TreeNode {
* int val = 0;
* TreeNode left = null;
* TreeNode right = null;
* }
*/
public class Solution {
public List<List<Integer>> zigzagLevelOrder(TreeNode root) {
List<List<Integer>> res = new ArrayList<>();
if (root == null)
return res;
Queue<TreeNode> queue = new LinkedList<TreeNode>();
queue.offer(root);
while(!queue.isEmpty()){
ArrayList<Integer> list= new ArrayList<Integer>();//存储每一层节点
//遍历当前层的节点 注意不能反着写
for(int i= queue.size();i>0;i--){
TreeNode temp = queue.poll();
//res.size()+1:当前的层数,从1开始
if((res.size() + 1) % 2 !=0)
list.add(temp.val); //奇数层,头插
else
list.add(0,temp.val); //偶数层,尾插
if(temp.left!=null)
queue.add(temp.left);
if(temp.right!=null)
queue.add(temp.right);
}
res.add(list);
}
return res;
}
}
6. 二叉树右视图
BFS:
- 利用 BFS 进行层次遍历,记录下每层的最后一个元素。
- 时间复杂度: O(N),每个节点都入队出队了 1 次。
- 空间复杂度: O(N),使用了额外的队列空间。
class Solution {
public List<Integer> rightSideView(TreeNode root) {
List<Integer> res = new ArrayList<>();
if (root == null) {
return res;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while (!queue.isEmpty()) {
int size = queue.size();
for (int i = 0; i < size; i++) {
TreeNode node = queue.poll();
if (node.left != null) {
queue.offer(node.left);
}
if (node.right != null) {
queue.offer(node.right);`在这里插入代码片`
}
if (i == size - 1) { //将当前层的最后一个节点放入结果列表
res.add(node.val);
}
}
}
return res;
}
}
DFS:
- 思路: 我们按照 「根结点 -> 右子树 -> 左子树」 的顺序访问,就可以保证每层都是最先访问最右边的节点的。
(与先序遍历 「根结点 -> 左子树 -> 右子树」 正好相反,先序遍历每层最先访问的是最左边的节点) - 时间复杂度: O(N),每个节点都访问了 1 次。
- 空间复杂度: O(N),因为这不是一棵平衡二叉树,二叉树的深度最少是logN, 最坏的情况下会退化成一条链表,深度就是 N,因此递归时使用的栈空间是O(N) 的。
class Solution {
List<Integer> res = new ArrayList<>();
public List<Integer> rightSideView(TreeNode root) {
dfs(root, 0); // 从根节点开始访问,根节点深度是0
return res;
}
private void dfs(TreeNode root, int depth) {
if (root == null) {
return;
}
// 先访问 当前节点,再递归地访问 右子树 和 左子树。
// 如果当前节点所在深度还没有出现在res里,说明在该深度下当前节点是第一个被访问的节点,因此将当前节点加入res中。
if (depth == res.size()) {
res.add(root.val);
}
depth++;
dfs(root.right, depth);
dfs(root.left, depth);
}
}