【数据结构】AVL(平衡)二叉树——搜索性能的优化

1. AVL树的概念

在上篇博客:二叉搜索树中我有讲到,二叉搜索树可以缩短查找的效率,但最后发现 如果数据有序或接近有序时构造的二叉搜索树将退化为单支树,这时查找元素相当于在有序表中搜索元素,效率低下。

因此,两位俄罗斯的数学家又发明了一种解决上述问题的方法:AVL树。它最主要的特点是:当二叉树插入新结点后,如果能保证每个结点左右子树的高度差的绝对值不超过1(或许需要对树中节点的位置进行调整),即可降低树的高度,从而减少平均搜索长度。

一棵AVL树,要么是空树,要么是具有以下性质的二叉搜索树:保证严格平衡

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1,0,1)

问题1:下面这棵树是AVL树吗?

在这里插入图片描述

在上图中,所有节点平衡因子的计算结果都在(-1,0,1)中,所以是一棵AVL树。

问题2: 如果插入10 这个节点以后呢?

在这里插入图片描述

在上图中,加入10这个节点后,8,7两个节点的平衡因子被更新为2 ,所以不再是AVL树。
此时我们需要旋转调整使得每个节点的平衡因子再次满足条件(如上面的右图),才可以重新达到AVL平衡的状态。上图旋转调整的过程,我在下面会详细讲到。

2.AVL 树的功能实现——含代码

AVL 树和二叉树最本质的区别就是 含有平衡因子,保证“严格”平衡。

其实AVL树的查找,插入,删除都与二叉树相似,在上篇博客:二叉搜索树 中, 我讲过详细的过程,不太明白的小伙伴可以查看,并且在二叉搜索树的模拟实现 这篇博客中有完整的代码可以参考。
所以在下面,我主要讲一下 插入结点后如何更新平衡因子,怎样调节使树再次达到平衡。

2.1 AVL 树结点的定义
template <class K, class V>
	struct AVLTreeNode
	{
		AVLTreeNode(const pair<K,V>&kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		, _bf(0)
		{}

		AVLTreeNode<K, V>* _left;   //该节点的左孩子
		AVLTreeNode<K, V>* _right;   //该节点的右孩子
		AVLTreeNode<K, V>* _parent;   //该节点的双亲
		pair<K, V> _kv;          //该节点中的值
		int _bf;          //该节点的平衡因子
	};
2.2 插入结点
  1. 插入节点的过程和二叉搜索树一样:先确定位置再进行插入
  2. 更新平衡因子,若绝对值大于1则需要旋转调节平衡因子

更新平衡因子的过程:
按二叉搜索树的规则将新结点插入后,AVL树的平衡可能遭到破坏,所以我们需要更新平衡因子,从而检测是否破坏了AVL 树的平衡性。

在插入前parent的平衡因子有三种情况:-1,0,1,插入时有两种情况:

1) 若新结点cur插入到结点 parent的左侧,只需给parent 的_bf 做-1操作
2)若新结点cur插入到结点 parent的右侧,只需给parent 的_bf 做+1操作

插入后parent 的平衡因子有 三种情况:0,正负1,正负2,此时分情况处理:

1)若parent平衡因子是0,则插入成功,直接返回true
2)若parent平衡因子是正负1,则继续向上更新直至根节点或|_bf|==2时做旋转处理
3)若parent平衡因子是正负2,则违反了平衡树的性质,需要做旋转处理使得重新平衡

while (parent)
			{
				if (parent->_left == cur)
					parent->_bf--;
				else
					parent->_bf++;
				if (parent->_bf == 0)  break;     //bf==0 插入成功
				else if (parent->_bf == 1 || parent->_bf == -1)  //|bf|==1  继续更新
				{
					cur = parent;
					parent = cur->_parent;
				}
				else if       //|bf|==2  做旋转调整       
				{
					//旋转

				}

旋转调节平衡的过程
AVL树的旋转分为以下四种:右单旋,左单旋,先右单旋再左单旋,先左单旋再右单旋 下面我通过抽象图帮助大家理解这四个旋转的过程

1.新结点插入较高左子树的左侧——左左:右单旋

这里cur和parent的bf 都是负数
在这里插入图片描述

//右单旋
		void RotateR(Node* parent)
		{
			Node* subL = parent->_left;
			Node* subLR = subL->_right;
			parent->_left = subLR;
			if (subLR)
				subLR->_parent = parent;
			subL->_right = parent;
			Node* pp = parent->_parent;
			parent->_parent = subL;
			if (parent == _root)
			{
				_root = subL;
				subL->_parent = nullptr;
			}
			else
			{
				if (pp->_left == parent)
				{
					pp->_left = subL;
					subL->_parent = pp;
				}
				else
				{
					pp->_right = subL;
					subL->_parent = pp;
				}
			}
			subL->_bf = parent->_bf = 0;
		}

2.新结点插入较高右子树的右侧——右右:左单旋

这里cur和parent的bf 都是正数
在这里插入图片描述

//左单旋
		void RotateL(Node* parent)
		{
			Node* subR = parent->_right;
			Node* subRL = subR->_left;
			Node* pp = parent->_parent;
			parent->_right = subRL;
			if (subRL)
				subRL->_parent = parent;
			subR->_left = parent;
			parent->_parent = subR;
			if (parent == _root)
			{
				_root = subR;
				subR->_parent = nullptr;
			}
			else
			{
				if (pparent->_left == parent)
				{
					pparent->_left = subR;
					subR->_parent = pparent;
				}
				else
				{
					pparent->_right = subR;
					subR->_parent = pparent;
				}
			}
			parent->_bf = subR->_bf = 0;
		}

3.新结点插入较高左子树的右侧——左右:先左单旋再右单旋

这里parent 的bf为负,cur 的bf为正
在这里插入图片描述

//左右双旋
		void RotateLR(Node* parent)
		{
			Node* subL = parent->_left;
			Node* subLR = subL->_right;

			int bf = subLR->_bf;
			RotateL(subL);//先左单旋
			RotateR(parent);//再右单旋

			if (bf == 0)
			{
				parent->_bf = subL->_bf = subLR->_bf = 0;
			}
			else if (bf == 1)
			{
				parent->_bf = 0;
				subL->_bf = -1;
				subLR->_bf = 0;
			}
			else if (bf == -1)
			{
				parent->_bf = 1;
				subL->_bf = 0;
				subLR->_bf = 0;
			}
			else
				assert(false);
		}

4.新结点插入较高右子树的左侧——右左:先右单旋再左单旋

这里parent 的bf为正,cur 的bf为负
在这里插入图片描述

//右左双旋
		void RotateRL(Node* parent)
		{
			Node* subR = parent->_right;
			Node* subRL = subR->_left;

			int bf = subRL->_bf;
			RotateR(subR);
			RotateL(parent);

			if (bf == 0)
				parent->_bf = subR->_bf = subRL->_bf = 0;
			else if (bf == 1)
			{
				parent->_bf = -1;
				subR->_bf = 0;
				subRL->_bf = 0;
			}
			else if (bf == -1)
			{
				parent->_bf = 0;
				subR->_bf = 1;
				subRL->_bf = 0;
			}
			else
				assert(false);
		}

关于AVL树完整的实现代码,可参考下篇博客:AVL树的完整实现:https://blog.csdn.net/ly_6699/article/details/89816571

3.AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点左右子树的高度差的绝对值不能超过1,这样可以保证查询时的高效性。

但很多人又发现,如果我们对AVL树做一些结构修改的操作,性能十分低下,比如:插入和删除时都要维护它的绝对平衡性,从而需要不断地旋转,直至达到完全平衡的状态,这样的操作太耗费时间和精力。
因此,如果需要一种查询高效且有序的数据结构,而且数据的个数是静态的,可以考虑用AVL树,但如果结构需要经常修改,最好慎用!!

这时,我们就想有没有另外一个更好的选择,既能保证查找效率,又能提高修改效率呢?巧了,就刚好有人提出了红黑树,完美的解决这些问题。
关于红黑树,我在下篇博客:红黑树 中会详细讲到,敬请期待。

  • 6
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值