排序:
默认
按更新时间
按访问量

【Python】获取对象信息dir() ***【__XX__()类型方法】*** 获取对象方法

如果要获得一个对象的所有属性和方法,可以使用dir()函数,它返回一个包含字符串的list,比如,获得一个str对象的所有属性和方法: >>> dir('ABC') ['__add__', '__class__',..., '_...

2018-11-05 16:40:06

阅读数:14

评论数:0

python 自定义属性访问 __setattr__, __getattr__,__getattribute__, __call__

object._getattr_(self, name) __gettattr__:如果某个类定义了这个方法,并且在该类的对象的字典中又找不到相应的属性时候,那么该方法会被调用。 实例instance通过instance.name访问属性name,只有当属性name没有在实例的__dict...

2018-11-04 22:19:19

阅读数:22

评论数:0

Python 的类(菜鸟教程)

原文地址:http://www.runoob.com/python/python-object.html 面向对象技术简介 类(Class): 用来描述具有相同的属性和方法的对象的集合。它定义了该集合中每个对象所共有的属性和方法。对象是类的实例。 类变量:类变量在整个实例化的对象中是公用的。...

2018-11-04 21:32:32

阅读数:15

评论数:0

【pytorch学习】《TensorDataset》中的__getitem__ 和《DataLoader》

一、 代码中的例子: # -*- coding: utf-8 -*- import torch import torch.utils.data as Data torch.manual_seed(1) # reproducible BATCH_SIZE = 5 x = torch.l...

2018-11-04 10:45:07

阅读数:32

评论数:0

2017知乎看山杯 从入门到第二

转载:原网址https://zhuanlan.zhihu.com/p/29020616 2017知乎看山杯 从入门到第二 利用一个暑假的时间,做了研究生生涯中的第一个正式比赛,最终排名第二,有些小遗憾,但收获更多的是成长和经验。我们之前没有参加过机器学习和文本相关的比赛,只是学过一些理论基...

2018-11-01 20:17:05

阅读数:15

评论数:0

自然语言处理领域国内外著名会议和期刊

本文介绍自然语言处理(Natural Language Processing, NLP)领域的一些国内外著名会议和期刊。 自然语言处理(NLP)和计算语言学(Computational Linguistics, CL)有很多重合之处。 国际会议 ACL、EMNLP、NAACL 和 COLING...

2018-10-30 21:09:41

阅读数:114

评论数:0

迭代器_iter_和生成器yield

一、迭代器 定义: 对于list、string、tuple、dict等这些容器对象,使用for循环遍历是很方便的。在后台for语句对容器对象调用iter()函数。iter()是python内置函数。 iter()函数会返回一个定义了next()方法的迭代器对象,它在容器中逐个访问容器内的元素...

2018-10-25 21:41:37

阅读数:21

评论数:0

tf.metrics.accuracy

 tf.metrics.accuracy返回两个值,accuracy为到上一个batch为止的准确度,update_op为更新本批次后的准确度。 accuracy, update_op = tf.metrics.accuracy(labels=x, predictions=y) 看代码: ...

2018-10-14 14:51:43

阅读数:21

评论数:0

想了解推荐系统最新研究进展?请收好这16篇论文

转载自:https://blog.csdn.net/c9Yv2cf9I06K2A9E/article/details/82881839   在碎片化阅读充斥眼球的时代,越来越少的人会去关注每篇论文背后的探索和思考。   在这个栏目里,你会快速 get 每篇精选论文的亮点和痛点,时刻紧跟...

2018-10-09 17:14:21

阅读数:73

评论数:0

【Tensorflow学习】 RNN 《莫凡》

cell = tf.contrib.rnn.BasicLSTMCell(n_hidden_units)   init_state = cell.zero_state(batch_size, dtype=tf.float32) outputs, final_state = tf.nn.dynam...

2018-10-03 12:41:49

阅读数:59

评论数:0

【Tensorflow学习】tf.data.Dataset使用

Tensorflow API: tf.data.Dataset使用 转载自https://blog.csdn.net/ssmixi/article/details/80572813 Tensorflow中之前主要用的数据读取方式主要有: 建立placeholder,然后使用feed_dict...

2018-09-30 16:18:21

阅读数:75

评论数:0

【tensorflow 学习】 tensorboard可视化《莫凡》

标准过程  #调用 $ tensorboard --logdir log #存储变量 tf.summary.histogram('h_out', l1) #存储loss tf.summary.scalar('loss', loss) #operation to merge all summ...

2018-09-28 10:55:41

阅读数:53

评论数:0

【tensorflow 学习】 name_scope和variable_scope的区别

在tensorflow中,有两个scope, 一个是name_scope一个是variable_scope,这两个scope到底有什么区别呢?  三个例子 先看第一个程序: with tf.name_scope("hello") as name_scop...

2018-09-27 13:40:42

阅读数:19

评论数:0

【tensorflow 学习】tf.get_variable()和tf.Variable()的区别

1. tf.Variable() W = tf.Variable(<initial-value>, name=<optional-name>) 用于生成一个初始值为initial-value的变量。必须指...

2018-09-24 21:16:41

阅读数:23

评论数:0

python命令行解析之parse_known_args()函数和parse_args()

命令行解析 首先导入命令行解析模块  import argparse import sys 然后创建对象 parse=argparse.ArgumentParser() 然后增加命令行 对于函数add_argumen()第一个是选项,第二个是数据类型,第三个默认值,第四个是hel...

2018-09-23 16:39:20

阅读数:40

评论数:0

对于Python中@property的理解和使用,将方法变为属性

重看狗书,看到对User表定义的时候有下面两行 @property def password(self): raise AttributeError('password is not a readable attribute') @password.s...

2018-09-14 20:41:24

阅读数:27

评论数:0

正则表达式符号表

1. 正则表达式基础 1.1. 简单介绍 正则表达式并不是Python的一部分。正则表达式是用于处理字符串的强大工具,拥有自己独特的语法以及一个独立的处理引擎,效率上可能不如str自带的方法,但功能十分强大。得益于这一点,在提供了正则表达式的语言里,正则表达式的语法都是一样的,区别只在于不同的...

2018-09-14 12:48:09

阅读数:20

评论数:0

2018.06.06论文:12个NLP分类模型

https://blog.csdn.net/u012052268/article/details/80698930 1 概述 1.1模型概览 1.2各模型效果对比: 1.4 代码用法: 2 模型细节: 2.1 快速文本(fastText) 介绍 解释 总结 ...

2018-09-12 09:51:56

阅读数:31

评论数:0

python结巴分词、jieba加载停用词表

python结巴分词   python结巴分词 jieba中文分词简介 中文分词的原理 1 基于规则 2 基于统计 3 jieba的原理 安装结巴jieba jieba三种分词模式以及其应用 jieba增强功能-加载自定义词典 1 载入新自定义词典...

2018-09-12 09:14:56

阅读数:47

评论数:0

【tensorflow 学习】保存模型、再次加载模型等操作

由于经常要使用tensorflow进行网络训练,但是在用的时候每次都要把模型重新跑一遍,这样就比较麻烦;另外由于某些原因程序意外中断,也会导致训练结果拿不到,而保存中间训练过程的模型可以以便下次训练时继续使用。 所以练习了tensorflow的save model和load model。 参考...

2018-09-09 17:39:00

阅读数:56

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭