2017知乎看山杯 从入门到第二

2017知乎看山杯 从入门到第二

转载:原网址https://zhuanlan.zhihu.com/p/29020616

2017知乎看山杯 从入门到第二

利用一个暑假的时间,做了研究生生涯中的第一个正式比赛,最终排名第二,有些小遗憾,但收获更多的是成长和经验。我们之前没有参加过机器学习和文本相关的比赛,只是学过一些理论基础知识,没有付诸过实践,看过的几篇论文也多亏前辈的分享(一个是用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践,另一个是brightmart的text_classification,里面用Keras实现了很多文本分类的模型)。这些为我们的入门打下了良好的基础,在比赛过程中也是反复研读和实践,在此感谢两位前辈的无私分享。

先放一波链接:

下面对在这次比赛中用到的方法和收获的经验,做一个简单的总结和分享。

 

用单模型探索数据的极限

1. 任务

  • 典型的文本多标签分类问题,根据用户在知乎上发布的问题标题及描述,判断它属于哪几个话题
  • 训练数据给出了300万问题及其话题的绑定关系,话题标签共有1999个,有父子关系,构成有向无环图
  • 要求对未标注的数据预测其最有可能绑定的Top5话题标签
  • 评测采用准确率与召回率的调和平均,准确率的计算按照位置加权,越靠前的分数越高(具体见评测方案

2. 数据

比赛提供的数据是300万问题和话题的标题(下称title)及描述(下称desc),分别有对应的字序列(下称char)和词序列(下称word),全部是以id的形式给出。这意味着我们是看不到原始文本的,所以对于badcase的分析也很困难,但好在其数据量够大(2亿多词,4亿多字),还是可以用深度学习来做。知乎官方也提供了训练好的embedding(维度256),字级别和词级别的都有,但是是分开训练,不属于同一个语义向量空间。

坊间常说:数据和特征决定了机器学习的上限,而模型和算法知识逼近这个上限而已。对于深度学习,因为不存在特征工程,所以数据处理就至关重要了。而良好且合理的数据处理离不开系统详细的数据分析,要知道数据是什么样,数据怎么分布,才能更好地选择模型和训练方式。

2.1 数据分析

这里主要是对问题的title和desc做长度分析,更为详细的分析见数据分析

首先是问题title的字词长度分布:

其次是问题desc的字词长度分布:

2.2 预处理

  • 随机shuffle后以9:1的比例划分线下验证集和训练集,防止数据周期的影响
  • 对于embedding矩阵中未出现的词,添加,并用-0.25~0.25初始化,千万不能扔掉,这样会破坏前后的语义关系
  • 对于title和desc,分别根据其平均长度*2,做截断和补齐至长度一致,便于batch输入网络训练

3. 模型

参照brightmart的github开源,我们尝试了前5种模型,分别是FastTextTextCNN、TextRNN、RCNNHAN

其中,HAN的原始论文中用的是词和句子两层Attention,而数据中是看不出句子的,所以这个方法我只用了一层word,效果不好。而RCNN因为同时用到了RNN和CNN的思想,所以整个网络的训练时间很长,且其效果与单独的RNN和CNN差不多,因此后期没有使用此模型。最终用到的模型有:

  • FastText:通过Average抽象出概括性语义信息
  • TextCNN:仿照n-gram捕捉局部语义信息
  • TextRNN:提取序列语义信息

3.1 单模型Score

因为没有花很多时间在单模型调参训练上,所以最终单Model的分数普遍偏低,约比别的队伍低0.5~1个百分点。

3.2 核心思路

这是我们这次参赛的一大亮点和创新点,就是成功地在深度学习上应用了一种类似于AdaBoost的做法,通过训练多层来不断修复前面层的偏差。我们在分析数据的时候发现,一个模型的输出是具有类别倾向性的,所以在某些类别上可能全对,而在某些类别上可能全错,所以我们针对这种偏差做了一些改进,通过人为地定义偏差的计算方式,指导下一层模型更多关注那些错的多的类,从而达到整体效果的提升。

通过用这种方法,单模型Score有了质的飞跃,平均提升都在1.5个百分点(FastText因模型过于简单,提升空间有限),而10层的RNN则更是在用全部训练集finetune之后,分数直接从0.413飙升到0.42978,可谓真是用单模型探索数据的极限了。

这种方法的优势在于,一般只要不断加深训练层数,效果就会提升,但缺点却在于它抹平了模型的差异性,对于模型融合效果不友好。

3.3 模型融合

模型融合依靠差异性,而我们模型的差异性在前面已经近乎被抹平,所以又另寻他路,用了另外两个方法:

  • 改变输入,从word改成char,虽然char的单模型效果不好,但总体融合却能提升很多
  • 人为定义不同的偏差计算方式

最终模型主要是5个10层模型的概率加权融合,分数在0.43506。

4. 结束语

这次比赛收获很大,总结起来就是:

  • 数据预处理很重要
  • 模型不一定是最主要的,要多尝试其他方法,更不能无脑训模型,尤其是对于深度学习这种“黑盒子”
  • 比赛心态要放平,要抱着学习的心态

最后,还是要感谢知乎等组织举办的这次比赛,也感谢北邮模式识别实验室的大力支持!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值