bzoj1044 木棍分割 二分+贪心&dp优化

对于第一问:

    直接二分+贪心即可。贪心策略:能加进来的加进来,否则就从当前一根起重新再砍一截。

对于第二问:

    (1)简单dp。设f[j][i]表示到第i个点,截取j个木棍且满足要求的方案数。同时,用sum[i]表示到i为止的木棍做长度,则    f[j][i]={f[j-1][k]}(0<=k<i,sum[i]-sum[k]<=ans1)


   (2)空间优化。由于n<=50000, 0<=m<=min(n-1,1000),空间最大可以达到50000*1000=5*10^7,明显太大。由(1)的转移方程,我们发现f[j]的值只和f[j-1]有关。由此,我们可以用滚动数组将空间优化到O(N)


    (3)时间优化。根据(1)的转移方程,我们发现时间为O(N^2M),不能承受。我们应至少去掉一个N。观察转移方程,我们发现部分f[j-1][k]的值被反复计算。那么同样运用前缀和的思想,我们可以利用上一个f[j][i]的值,加加减减之后得到当前f[j][i]的值。具体的方法也比较好想,由于我语文不太好,所以就请代码帮我表达了。

      注意到代码中的p数组,实际上这也是多余的,完全可以利用一个变量来计算,这样可以快1/2左右,也比较简单,这里不再叙述了。


P.S:注意常数!

下附AC代码:

const
  mo=10007;
  inf=1000000007;
var
  a,s,p:array[0..51000] of longint;
  f:array[0..1,0..51000] of longint;
  n,m,i,k,r,l,mid,t,ans,ans2,now,last:longint;
function ok(x:longint):boolean;
var
  i,sum,num:longint;
begin
  sum:=0; num:=0;
  for i:=1 to n do
    begin
      if sum+a[i]>x then
        begin
          num:=num+1; sum:=0;
          if num>m then exit(false);
        end;
      sum:=sum+a[i];
    end;
  if sum>0 then num:=num+1;
  if num>m then exit(false) else exit(true);
end;
begin
  readln(n,m); m:=m+1;
  for i:=1 to n do
    begin
      readln(a[i]);
      if a[i]>r then r:=a[i];
      s[i]:=s[i-1]+a[i];
    end;
  l:=inf;
  while r+1<l do
    begin
      mid:=(r+l)>>1;
      if ok(mid) then l:=mid else r:=mid+1;
    end;
  if ok(r) then ans:=r else ans:=l;
  for i:=1 to n do
    if s[i]<=ans then f[0,i]:=1 else break;
  s[0]:=-inf;
  for t:=2 to m do
    begin
      now:=now xor 1; last:=now xor 1;
      for i:=1 to n do
        begin
          f[now,i]:=0; p[i]:=0;
        end;
      k:=n+1;
      for i:=n downto 2 do
        begin
          if k<i then 
             f[now,i]:=(f[now,i]+p[k]-p[i]) mod mo
          else k:=i;
          while (k>1) and (s[i]-s[k-1]<=ans) do
            begin
              k:=k-1;
              f[now,i]:=(f[now,i]+f[last,k]) mod mo;
              p[k]:=(p[k+1]+f[last,k]) mod mo;
            end;
        end;
      ans2:=ans2+f[now,n];
    end;
  writeln(ans,' ',ans2 mod mo);
end.

2015.2.8

by lych

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值