Description
“~妖梦,我又饿了!”
魂魄妖梦身为西行寺家的专属庭师第二代兼大小姐的西行寺幽幽子的护卫,却承担了为幽幽子准备食物的任务。幽幽子是个非常贪吃的亡灵,所以妖梦经常为食物的问题所困。
现在,妖梦有n盘食物排成一排,第i盘食物有一个属性a[i]。亡灵的体质比较特殊,所以妖梦认为食物的属性很重要。妖梦会进行q次询问,每次给出两个整数r,k,她想知道有多少个区间[i,r](1≤i≤r),区间内所有食物属性值的异或大于等于k。
30%:n,q≤1000
另有30%数据:n≤1000且询问的r是不下降的
100%:1≤n,q≤100000 r≤n 0≤k,a[i]≤1,000,000,000
Analysis
考虑暴力,30%很简单。
根据60%的思路,对于任意数据可以优化成离线,把询问按r排序。然后随便乱搞。
可是,满分做法还要优化,跟着离线的想法。
对于这种题,很经典的思路是弄一个Trie,然后xor在Trie上加入,查询,从左到右边扫边加入边查询。
Code
#include<cstdio>
#include<algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,b,a) for(int i=b;i>=a;i--)
using namespace std;
typedef long long ll;
const int N=100010;
int num;
ll a[N],c[N],sx[N],ans[N];
struct node
{
int r,pos;
ll k;
}b[N];
struct trie
{
ll sm;
int _0,_1;
}tr[N*31];
bool cmp(node a,node b){return a.r<b.r;}
void add(ll x)
{
int v=1;
fd(d,31,0)
{
tr[v].sm++;
if(x&(1<<d))
{
if(!tr[v]._1) tr[v]._1=++num;
v=tr[v]._1;
}
else
{
if(!tr[v]._0) tr[v]._0=++num;
v=tr[v]._0;
}
if(!d) tr[v].sm++;
}
}
ll query(ll ar,ll k)
{
int v=1;
ll t=0;
fd(d,31,0)
{
int x=ar&(1<<d),y=k&(1<<d);
if(y)
{
if(x) v=tr[v]._0;
else v=tr[v]._1;
}
else
{
if(x) t+=tr[tr[v]._0].sm,v=tr[v]._1;
else t+=tr[tr[v]._1].sm,v=tr[v]._0;
}
if(!d) t+=tr[v].sm;
}
return t;
}
int main()
{
freopen("food.in","r",stdin);
freopen("food.out","w",stdout);
int n,m,pos;
scanf("%d",&n);
fo(i,1,n)
{
scanf("%lld",&a[i]);
sx[i]=sx[i-1]^a[i];
}
scanf("%d",&m);
fo(i,1,m) scanf("%d %lld",&b[i].r,&b[i].k),b[i].pos=i;
sort(b+1,b+m+1,cmp);
int r=0;
num=1;
fo(i,1,m)
{
while(r<b[i].r) add(sx[r++]);
ans[b[i].pos]=query(sx[b[i].r],b[i].k);
}
fo(i,1,m) printf("%lld\n",ans[i]);
return 0;
}