Description
在一个N个节点的无向图(没有自环、重边)上,每个点都有一个符号,可能是数字,也可能是加号、减号、乘号、除号、小括号。你要在这个图上数一数,有多少种走恰好K个节点的方法,使得路过的符号串起来能够得到一个算数表达式 算数表达式。路径的起点和终点可以任意选择。
所谓算数表达式 算数表达式,就是由运算符连接起来的一系列数字。括号可以插入在表达式中以表明运算顺序。
注意,你要处理各种情况,比如数字不能有多余的前导0,减号只有前面没有运算符或数字的时候才可以当成负号,括号可以任意添加(但不能有空括号),0可以做除数(我们只考虑文法而不考虑语意),加号不能当正号。
例如,下面的是合法的表达式:
-0/ 0
((0)+(((2*3+4)+(-5)+7))+(-(2*3)*6))
而下面的不是合法的表达式:
001+0
1+2(2)
3+-3
–1
+1
()
对于100%的数据,1≤N≤20,0≤M≤N×(N-1)/ 2,0≤K≤30
Analysis
dp模型显然,考场上不难想到
只是随着思考的深入,状态的表示需要不断完善
那么最终的dp状态为f[i][j][k][0..4]
表示走了k步,到达点i,还需要j个右括号匹配,0..4分别表示当前点状态
0表示为前导0
1表示数字
2表示运算符
3表示左括号
4表示右括号
预处理每一种状态后可接其他哪些状态
有两种特殊情况,“-”可以作为第一个,“(”后面可以接“-”
然后就直接转移啦