【JZOJ 5430】 图

Description

有一个n个点的无向图,给出m条边,每条边的信息形如x,y,c,r
给出q组询问形如u,v,l,r
接下来解释询问以及边的意义
询问表示,一开始你在点u上,然后按顺序处理编号从l到r的边
对于一条边x,y,c,r,你可以进行两种操作:
如果你当前在x点或者y点上,那么你可以走这条边(从x到y或从y到x)并付出c的代价(当然你也可以不走,看操作2)
如果你不走这条边或者不可以走这条边(即你当前不在x或y上),那么你需要付出r的代价询问如果要从u点开始,按顺序处理完编号从l到r的边之后到达v点的最小代价,如果不能到达v,那么输出-1。
边和点的编号从1开始
对于100%的数据,n<=30,m<=20000,q<=200000

Analysis

首先,由于有l到r这种恶心的限制,我们感受出离线处理会方便些
设个状态(x,y,l,r)表示经过l到r条边,x到y的最小代价,状态复杂度O(n^2m^2),肯定是不能直接存了,而且要能快速计算。
考虑状态之间的合并,(x,y,l,mid)+(y,z,mid+1,r)=(x,z,l,r),需要O(n^3)
状态前后两端加入,(x,y,l,l)+(y,z,l+1,r)(前端) (x,y,l,r-1)+(y,z,r,r)(后端)=(x,z,l,r),需要O(n^2)
无法支持两端删除
如果使用莫队,需要打不带删除的版本,而且据说块大小应该设为 m1q
时间带根号,应该过不了
如果使用分块,(坑)。。。。
如果使用分治,每次处理l,r跨mid的询问,可以弄出l~mid的信息,与mid+1~r的信息再合并(需要枚举到mid时走到哪个点)
算一下复杂度应该是 O(qn+(n2m+q)logm)

Code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,b,a) for(int i=b;i>=a;i--)
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)<(y)?(x):(y))
#define mset(a,x) memset(a,x,sizeof(a))
using namespace std;
typedef long long ll;
char ch;
void read(int &n){n=0;int p=1;for(ch=getchar();ch<'0' || ch>'9';ch=getchar())if(ch=='-') p=-1;for(;'0'<=ch && ch<='9';ch=getchar()) n=n*10+ch-'0';n*=p;}
void writeln(int x){if(x==0) {puts("0");return;}char st[20];int t=0;for(;x;x/=10) st[++t]=(x%10)+'0';while(t) putchar(st[t--]);puts("");}
const int N=33,M=2e4+5,Q=2e5+5,INF=2139062143;
int n,m,q,ans[Q],le[M][N][N],ri[M][N][N];
struct lyd
{
    int x,y,l,r,id;
}b[M],c[Q],cl[Q],cr[Q];
bool pd(int x,int y,lyd e)
{
    return x==e.x && y==e.y || x==e.y && y==e.x;
}
void dfs(int l,int r,int ql,int qr)
{
    if(l>r || ql>qr) return;
    if(l==r)
    {
        fo(i,ql,qr) ans[c[i].id]=pd(c[i].x,c[i].y,b[l])?b[l].l:(c[i].x==c[i].y?b[l].r:INF);
        return;
    }
    int mid=l+r>>1;
    mset(le[mid+1],127);
    fo(i,1,n) le[mid+1][i][i]=0;
    mset(ri[mid],127);
    fo(i,1,n) ri[mid][i][i]=0;
    fd(k,mid,l)
    {
        mset(le[k],127);
        fo(i,1,n)
            if(i==b[k].x || i==b[k].y)
                fo(j,1,n) le[k][i][j]=min(b[k].r+le[k+1][i][j],b[k].l+le[k+1][b[k].x+b[k].y-i][j]);
            else
                fo(j,1,n) le[k][i][j]=b[k].r+le[k+1][i][j];
    }
    fo(k,mid+1,r)
    {
        mset(ri[k],127);
        fo(i,1,n)
            fo(j,1,n)
                if(j==b[k].x || j==b[k].y)
                    ri[k][i][j]=min(b[k].r+ri[k-1][i][j],b[k].l+ri[k-1][i][b[k].x+b[k].y-j]);
                else ri[k][i][j]=b[k].r+ri[k-1][i][j];
    }
    int nl=0,nr=0;
    fo(k,ql,qr)
        if(c[k].r<mid) cl[++nl]=c[k];
        else
        if(c[k].l>mid) cr[++nr]=c[k];
        else
        if(c[k].l<=mid && mid<=c[k].r)
        {
            int res=INF;
            fo(i,1,n)
                res=min(res,(ll)le[c[k].l][c[k].x][i]+ri[c[k].r][i][c[k].y]);
            ans[c[k].id]=res;
        }
    fo(i,ql,ql+nl-1) c[i]=cl[i-ql+1];
    fo(i,qr-nr+1,qr) c[i]=cr[i-(qr-nr)];
    dfs(l,mid-1,ql,ql+nl-1);
    dfs(mid+1,r,qr-nr+1,qr);
}
int main()
{
    freopen("graph.in","r",stdin);
    freopen("graph.out","w",stdout);
    read(n),read(m),read(q);
    fo(i,1,m) read(b[i].x),read(b[i].y),read(b[i].l),read(b[i].r);
    fo(i,1,q) read(c[i].x),read(c[i].y),read(c[i].l),read(c[i].r),c[i].id=i;
    dfs(1,m,1,q);
    fo(i,1,q)
        if(ans[i]==INF) puts("-1");else writeln(ans[i]);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值