定义
设
p
p
p是正整数,
g
g
g是整数,若
g
g
g模
p
p
p的阶等于
φ
(
p
)
φ(p)
φ(p),则称
g
g
g为模
p
p
p的一个原根。
简单来说,如果
g
g
g是
p
p
p的原根,那么
g
g
g的1…
φ
(
p
)
\varphi(p)
φ(p)次幂
m
o
d
p
mod\ p
mod p的结果一定互不相同。
应用
NTT时如果模数 p p p可以写成 p = k 2 c + 1 p=k2^c+1 p=k2c+1,可以求出 p p p的原根 g g g,并使 g p − 1 n g^{\frac{p-1}{n}} gnp−1等价于 ω n \omega_n ωn,这里的 n ≤ 2 c n\leq 2^c n≤2c
性质
首先
g
g
g要是
p
p
p的原根,肯定有
(
g
,
p
)
=
1
(g,p)=1
(g,p)=1吧
这时候就有欧拉定理
g
φ
(
p
)
≡
1
(
m
o
d
p
)
g^{\varphi(p)}≡1(mod\ p)
gφ(p)≡1(mod p)
如果
p
p
p有原根,那么
p
p
p的原根的数目一定是
φ
(
φ
(
p
)
)
\varphi(\varphi(p))
φ(φ(p))
求解
慌张枚举+冷静判定
绝大多时候够用,原根通常很小
例如求任何一个质数x的任何一个原根,一般就是枚举2到x-1,并检验。有一个方便的方法就是,求出x-1所有不同的质因子p1,p2…pm,对于任何2<=a<=x-1,判定a是否为x的原根,只需要检验a((x-1)/p1),a((x-1)/p2),…a^((x-1)/pm)这m个数中,是否存在一个数mod x为1,若存在,a不是x的原根,否则就是x的原根。
而a是原根的条件是对于任意的 x ∈ [ 1 , p − 2 ] , ( a x m o d    p ) ≠ 1 x∈[1,p−2],(a^x\mod p)\neq 1 x∈[1,p−2],(axmodp)̸=1,而实际上有上面的性质,我们只要看看 p − 1 p-1 p−1的因数(除他自己)是不是全都满足上面的式子就好了,那么只用判断所有 x = ( p − 1 ) / ( p − 1 的 质 因 数 ) x=(p-1)/(p-1的质因数) x=(p−1)/(p−1的质因数)即可,因为如果比这些数小的x0不满足,即 a x 0 a^{x0} ax0同余1,那么我们枚举的x里面肯定至少有一个是x0的倍数,那 a x a^x ax也同余1。
例题
51nod 1135 原根
给定一个质数P(P<=1e9),找出它的最小原根
#include<cstdio>
#include<cstring>
#include<algorithm>
#define fo(i,a,b) for(ll i=a;i<=b;++i)
#define fd(i,b,a) for(ll i=b;i>=a;--i)
using namespace std;
typedef long long ll;
ll P,m,a[20];
ll qmi(ll x,ll n,ll mo)
{
ll t=1;
for(x%=mo;n;n>>=1,x=x*x%mo) if(n&1) t=t*x%mo;
return t;
}
int main()
{
freopen("51nod1135.in","r",stdin);
//freopen("51nod1135.out","w",stdout);
scanf("%lld",&P);
ll t=P-1;
for(ll i=2;i*i<=t;++i)
if(t%i==0)
{
a[++m]=i;
while(t%i==0) t/=i;
}
if(t>1) a[++m]=t;
fo(x,2,P-1)
{
bool ok=1;
fo(i,1,m)
if(qmi(x,(P-1)/a[i],P)==1) {ok=0;break;}
if(ok) return printf("%lld\n",x),0;
}
return 0;
}