原根相关

定义

p p p是正整数, g g g是整数,若 g g g p p p的阶等于 φ ( p ) φ(p) φ(p),则称 g g g为模 p p p的一个原根。
简单来说,如果 g g g p p p的原根,那么 g g g的1… φ ( p ) \varphi(p) φ(p)次幂 m o d   p mod\ p mod p的结果一定互不相同。

应用

NTT时如果模数 p p p可以写成 p = k 2 c + 1 p=k2^c+1 p=k2c+1,可以求出 p p p的原根 g g g,并使 g p − 1 n g^{\frac{p-1}{n}} gnp1等价于 ω n \omega_n ωn,这里的 n ≤ 2 c n\leq 2^c n2c

性质

首先 g g g要是 p p p的原根,肯定有 ( g , p ) = 1 (g,p)=1 (g,p)=1
这时候就有欧拉定理 g φ ( p ) ≡ 1 ( m o d   p ) g^{\varphi(p)}≡1(mod\ p) gφ(p)1(mod p)
如果 p p p有原根,那么 p p p的原根的数目一定是 φ ( φ ( p ) ) \varphi(\varphi(p)) φ(φ(p))

求解

慌张枚举+冷静判定

绝大多时候够用,原根通常很小
例如求任何一个质数x的任何一个原根,一般就是枚举2到x-1,并检验。有一个方便的方法就是,求出x-1所有不同的质因子p1,p2…pm,对于任何2<=a<=x-1,判定a是否为x的原根,只需要检验a((x-1)/p1),a((x-1)/p2),…a^((x-1)/pm)这m个数中,是否存在一个数mod x为1,若存在,a不是x的原根,否则就是x的原根。

而a是原根的条件是对于任意的 x ∈ [ 1 , p − 2 ] , ( a x m o d &ThinSpace;&ThinSpace; p ) ≠ 1 x∈[1,p−2],(a^x\mod p)\neq 1 x[1,p2],(axmodp)̸=1,而实际上有上面的性质,我们只要看看 p − 1 p-1 p1的因数(除他自己)是不是全都满足上面的式子就好了,那么只用判断所有 x = ( p − 1 ) / ( p − 1 的 质 因 数 ) x=(p-1)/(p-1的质因数) x=(p1)/(p1)即可,因为如果比这些数小的x0不满足,即 a x 0 a^{x0} ax0同余1,那么我们枚举的x里面肯定至少有一个是x0的倍数,那 a x a^x ax也同余1。

例题

51nod 1135 原根
给定一个质数P(P<=1e9),找出它的最小原根

#include<cstdio>
#include<cstring>
#include<algorithm>
#define fo(i,a,b) for(ll i=a;i<=b;++i)
#define fd(i,b,a) for(ll i=b;i>=a;--i)
using namespace std;
typedef long long ll;
ll P,m,a[20];
ll qmi(ll x,ll n,ll mo)
{
	ll t=1;
	for(x%=mo;n;n>>=1,x=x*x%mo) if(n&1) t=t*x%mo;
	return t;
}
int main()
{
	freopen("51nod1135.in","r",stdin);
	//freopen("51nod1135.out","w",stdout);
	scanf("%lld",&P);
	ll t=P-1;
	for(ll i=2;i*i<=t;++i)
		if(t%i==0)
		{
			a[++m]=i;
			while(t%i==0) t/=i;
		}
	if(t>1) a[++m]=t;
	fo(x,2,P-1)
	{
		bool ok=1;
		fo(i,1,m)
			if(qmi(x,(P-1)/a[i],P)==1) {ok=0;break;}
		if(ok) return printf("%lld\n",x),0;
	}
	return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值