Tensorflow入门到实战三(构造简单的神经网络)

1:tf.random_normal:

正态分布产生的随机值:常用的参数就是shape,和dtype了,但是也包括方差和均值;

参数(shape,stddev,mean,dtype)

2:tf.random_uniform 

默然是在0到1之间产生随机数:

但是也可以通过maxval指定上界,通过minval指定下界

np.newaxis 的实用

np.newaxis 在使用和功能上等价于 None,查看源码发现:newaxis = None,其实就是 None 的一个别名。

np.newaxis 为 numpy.ndarray(多维数组)增加一个轴

>> x = np.arange(3)
>> x
array([0, 1, 2])
>> x.shape
(3,)

>> x[:, np.newaxis]
array([[0],
       [1],
       [2]])

>> x[:, None]
array([[0],
       [1],
       [2]])

>> x[:, np.newaxis].shape
 (3, 1)

add_layer

x=(特征数*样本数)

# add layer
def add_layer(inputs,in_size,out_size,activation_function=None):
    Weights = tf.Variable(tf.random_normal([out_size,in_size]))
    bias = tf.Variable(tf.zeros([out_size,1])+ 0.1)
    wx_plus_b = tf.matmul(Weights,inputs) + bias
    if activation_function is None:
        outputs = wx_plus_b
    else:
        outputs = activation_function(wx_plus_b)
    print(tf.shape(outputs))
    return outputs


# 构造一个数据集
x_data = np.linspace(-1,1,300)[np.newaxis,:]

noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise

# placeholder 占个位
xs = tf.placeholder(tf.float32)
ys = tf.placeholder(tf.float32)


l1 = add_layer(xs,1,10,activation_function=tf.nn.sigmoid)

prediction = add_layer(l1,10,1,activation_function=tf.nn.softmax)

loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1]))

train = tf.train.GradientDescentOptimizer(0.1).minimize(loss)


init = tf.global_variables_initializer()

session= tf.Session()

session.run(init)

for i in range(1000):
    session.run(train,feed_dict={xs:x_data,ys:y_data})
    if i%50==0:
        print('loss',session.run(loss, feed_dict={xs: x_data, ys: y_data}))

加速神经网络训练

使用梯度下降的时候,有一个问题,就是在网络非常复杂的时候,梯度下降的时候对计算的需求非常高。

常见的几种加速求解cost的最小值的方法:

  1. Stochastic Gradient Descent (SGD)

  2. Momentum

  3. AdaGrad

  4. RMSProp

  5. Adam

在tensorflow里面提供的几种优化器

  1. tf.train.GradientDescentOptimizer
  2. tf.train.AdaeltaOptimizer
  3. tf.train.AdagradDAOptimizer
  4. tf.train.AdamOptimizer
  5. tf.train.MomentumOptimizer
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值