【BZOJ】2957 楼房重建 线段树

80 篇文章 0 订阅
14 篇文章 0 订阅

题目传送门

这题其实可以用分块做的,但是为了接下来的BZOJ2770做准备,还是去学了一发线段树的解法。

首先我们要明白题目的意思:题目给出一些坐标,求当前所有坐标和原点的斜率严格上升的序列的最长长度。

查看n和m的范围,明显我们要想一种时间复杂度为O(nlogn)的算法或数据结构,要求支持插入、统计最大值。

线段树显然满足我们的要求,然后这题的难点就在于怎么用线段树求以一个数为起点的最长严格上升子序列。

我们定义find(f,k)表示以f为起点,区间为k的最长严格上升子序列的长度,设k的两个儿子为lt和rt,最长严格上升子序列为w。

我们可以分类讨论:

  1. lt中的最大值小于等于f,显然左子树对答案没有贡献,我们直接find(f,rt)即可
  2. lt中的最大值大于f,我们求出了左子树中的最长严格上升子序列,显然这个子序列是以左子树内的最大值为结尾的。这时我们没必要再去find(max_lt,rt)了,因为我们已经知道这个答案了——find(max_lt,rt)==k_w-lt_w。这个很显然啊,就是根据定义来的。

综上所述,这题就被顺利解决了。

附上AC代码:

#include <cstdio>
#include <cctype>
#include <algorithm>
#define mid ((t[k].l+t[k].r)>>1)
#define lt (k<<1)
#define rt (k<<1|1)
using namespace std;

const int N=1e5+10;
struct note{
	int l,r,w;
	double f;
}t[N*3];
int n,m,x,y;

inline char nc(void){
	static char ch[100010],*p1=ch,*p2=ch;
	return p1==p2&&(p2=(p1=ch)+fread(ch,1,100010,stdin),p1==p2)?EOF:*p1++;
}

inline void read(int &a){
	static char c=nc();int f=1;
	for (;!isdigit(c);c=nc()) if (c=='-') f=-1;
	for (a=0;isdigit(c);a=(a<<3)+(a<<1)+c-'0',c=nc());
	a*=f;return;
}

inline void build(int k,int l,int r){
	t[k]=(note){l,r,1,0.0};
	if (l==r) return;
	build(lt,l,mid),build(rt,mid+1,r);
	return;
}

inline int find(double f,int k){
	if (t[k].l==t[k].r) return f<t[k].f;
	if (f<=t[lt].f) return find(f,lt)+t[k].w-t[lt].w;
	else return find(f,rt);
}

inline void updata(int k){return (void)(t[k].f=max(t[lt].f,t[rt].f),t[k].w=t[lt].w+find(t[lt].f,rt));}

inline void change(int k,int wz,double f){
	if (t[k].l==t[k].r) return (void)(t[k].f=f,t[k].w=1);
	if (wz<=mid) change(lt,wz,f);
	else change(rt,wz,f);
	return updata(k);
}

int main(void){
	read(n),read(m),build(1,1,n);
	while (m--) read(x),read(y),change(1,x,1.0*y/x),printf("%d\n",find(0,1));
	return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值