【POJ】3070 Fibonacci 递推+矩阵优化

13 篇文章 0 订阅
4 篇文章 0 订阅

题目传送门

这题其实就是斐波那契数列,但是考虑到n的范围非常大,n=1e9,我们不能直接O(n)的递推。

其实题目已经给出了解法了,就是用矩阵快速幂来实现递推,把时间复杂度降到(2^3*log2(n))。

这题可以入门矩阵快速幂,为以后的矩阵快速幂加速DP做准备。

然后这题就喜闻乐见的A掉啦。

附上AC代码:

#include <cstdio>
#include <cstring>
using namespace std;

const int n=2,mod=1e4;
struct note{
	int map[3][3];
	inline void reset(void){
		memset(map,0,sizeof map);
		for (int i=1; i<=n; ++i) map[i][i]=1;
		return;
	}
	inline friend note operator * (note p,note q){
		note sum;
		for (int i=1; i<=n; ++i)
			for (int j=1; j<=n; ++j){
				sum.map[i][j]=0;
				for (int k=1; k<=n; ++k)
					sum.map[i][j]=(sum.map[i][j]+p.map[i][k]*q.map[k][j])%mod;
			}
		return sum;
	}
}a,ans;
int m;

inline int ksm(int m){
	ans.reset(),a.map[1][1]=a.map[1][2]=a.map[2][1]=1,a.map[2][2]=0;
	while (m){
		if (m&1) ans=ans*a;
		m>>=1,a=a*a;
	}
	return ans.map[1][2];
}

int main(void){
	for (scanf("%d",&m); ~m; scanf("%d",&m)) printf("%d\n",m==0?0:ksm(m));
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值