【BZOJ】2301 [HAOI2011]Problem b && 【BZOJ】1101 [POI2007]Zap 莫比乌斯函数+数论分块

题目传送门

还是ZZK大佬的讲解最平易近人了QwQ……

看到区间果断容斥(来自ZZK的教诲),令A=akB=bk又是推公式的环节

i=1aj=1b[(i,j)=k]=i=1Aj=1B[(i,j)=1]=i=1Aj=1Be((i,j))

我们知道e=μ1,于是式子可以变成
i=1Aj=1Bd|(i,j)μ(d)=d=1min(A,B)μ(d)AdBd

然后就是喜闻乐见的数论分块了。

附上AC代码:

#include <cstdio>
#include <cctype>
#include <algorithm>
using namespace std;

typedef long long ll;
const int N=5e4+10;
int t,a,b,c,d,k,miu[N],p[N],num;
bool bo[N];

inline char nc(void){
    static char ch[100010],*p1=ch,*p2=ch;
    return p1==p2&&(p2=(p1=ch)+fread(ch,1,100010,stdin),p1==p2)?EOF:*p1++;
}

inline void read(int &a){
    static char c=nc();int f=1;
    for (;!isdigit(c);c=nc()) if (c=='-') f=-1;
    for (a=0;isdigit(c);a=(a<<3)+(a<<1)+c-'0',c=nc());
    return (void)(a*=f);
}

inline void prime(int n){
    miu[1]=1;
    for (int i=2; i<=n; ++i){
        if (!bo[i]) p[++num]=i,miu[i]=-1;
        for (int j=1; j<=num&&p[j]*i<=n; ++j){
            bo[p[j]*i]=1;
            if (i%p[j]==0) {miu[p[j]*i]=0;break;}
            else miu[p[j]*i]=-miu[i];
        }
    }
    for (int i=2; i<=n; ++i) miu[i]+=miu[i-1];
    return;
}

inline ll calc(int a,int b){
    ll ret=0;a/=k,b/=k;
    for (int l=1,r; l<=a&&l<=b; l=r+1)
        r=min(a/(a/l),b/(b/l)),ret+=1ll*(miu[r]-miu[l-1])*(a/l)*(b/l);
    return ret;                                                    
}

int main(void){
    for (prime(5e4),read(t); t; --t){
        read(a),read(b),read(c),read(d),read(k),--a,--c;
        printf("%lld\n",calc(b,d)-calc(a,d)-calc(b,c)+calc(a,c));
    }
    return 0;
}

弱弱的附在最后:话说还有一道比这题要水一点的题目,哇!双倍经验!题目传送门

这题不用容斥,直接可以出答案的。

附上AC代码:

#include <cstdio>
#include <algorithm>
using namespace std;

const int N=5e4+10;
int t,a,b,k,p[N],miu[N],num;
bool bo[N];

inline void get(int n){
    miu[1]=1;
    for (int i=2; i<=n; ++i){
        if (!bo[i]) p[++num]=i,miu[i]=-1;
        for (int j=1; j<=num&&p[j]*i<=n; ++j){
            bo[p[j]*i]=1,miu[p[j]*i]=-miu[i];
            if (i%p[j]==0) {miu[p[j]*i]=0;break;}
        }
    }
    for (int i=2; i<=n; ++i) miu[i]+=miu[i-1];
    return;
}

inline int calc(int a,int b){
    int ret=0;
    for (int l=1,r; l<=a&&l<=b; l=r+1) r=min(a/(a/l),b/(b/l)),ret+=1ll*(miu[r]-miu[l-1])*(a/l)*(b/l);
    return ret;
}

int main(void){
    for (get(5e4),scanf("%d",&t); t; --t){
        scanf("%d%d%d",&a,&b,&k);
        printf("%d\n",calc(a/k,b/k));
    }
    return 0;
}
发布了197 篇原创文章 · 获赞 19 · 访问量 4万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览