分类算法的评估方法

本文介绍了分类算法的评估术语,如TP、FP、FN、TN,以及常见的评价指标,包括正确率、错误率、灵敏度、特效度、精度、召回率、F1值、PR曲线、ROC曲线和AUC值,还讨论了计算速度、鲁棒性和可扩展性等其他重要考量因素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基本术语

常见的模型评价术语,假设分类目标只有两类,计为正例(positive)和负例(negtive)则:
1)True positives(TP):被正确地划分为正例的个数,即实际为正例且被分类器划分为正例的实例数;
2)False positives(FP):被错误地划分为正例的个数,即实际为负例但被分类器划分为正例的实例数;
3)False negatives(FN):被错误地划分为负例的个数,即实际为正例但被分类器划分为负例的实例数;
4)True negatives(TN):被正确地划分为负例的个数,即实际为负例且被分类器划分为负例的实例数。

评价指标

1)正确率(accuracy)
正确率是我们最常见的评价指标,accuracy=(TP+TN)/(P+N),正确率是被分对的样本数在所有样本数中的占比,通常来说,正确率越高,分类器越好。

2)错误率(error rate)
错误率则与正确率相反,描述被分类器错分的比例,error rate=(FP+FN)/(P+N),对某一个实例来说,分对与分错是互斥事件,所以accuracy=1-error rate。

3)灵敏度(sensitive)
sensitive=TP/P,表示的是所有正例中被分对的比例,衡量了分类器对正例的识别能力。

4)特效度(specificity)
specificity=TN/N,表示的是所有负例中被分对的比例,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值