同余的一些知识

(a,b)代表最大公约数,[a,b]代表最小公倍数
  m|(a-b) <=> a≡b (mod m)
  a=pm+r  (0<=r<m)
  b=qm+r  (0<=r<m)
  由此可以推出:
  性质1aa(mod m),(反身性) 
   这个性质很显然.因为a-a=0=m·0。 
  性质2:若a≡b(mod m),那么b≡a(mod m),(对称性)。
  性质3:若a≡b(mod m),b≡c(mod m),那么a≡c(mod m),(传递性)。
  性质4:若a≡b(mod m),c≡d(mod m),那么a±c≡b±d(mod m),(可加减性)。
  性质5:若a≡b(mod m),c≡d(mod m),那么ac≡bd(mod m)(可乘性)。
   证明 :m|(a-b) , m|(c-d) 设 a-b=km c-d=lm (ac-bd)=klm^2+(b+d)m =>m|(ac-bd)  
  性质6:若a≡b(mod m),那么an≡bn(mod m),(其中n为自然数)。
   证明 : m|(a-b) => m|n*(a-b) 
  性质7:若ac≡bc(mod m),(c,m)=1,那么a≡b(mod m),(记号(c,m)表示c与m的最大公约数)。
   证明 : m|c(a-b) d=(m,c)=>m/d|(a-b) => a≡b(mod m/d)=>当 d=1时 即(c,m)=1上面结论成立
  性质8:若a≡b(mod m),那么a的n次方和b的n次方也对于m同余   
   证明 :a^n-b^k=(a-b)(a^(n-1)+a^(n-2)b.....b^(n-1)) +m|(a-b) ==>m|(a^n-b^n)
  性质9:若 a≡b(mod m1) a≡b(mod m2).... a≡b(mod mi) 则 a≡b(mod [m1,m2,..mi])
   证明:m1 |(a-b) m2|(a-b) ..mi|(a-b)  =>[m1,m2...mi]|(a-b) (因为 a-b里面含了 m集合的所有因子和每个因子的最大个数)
  推论 m1,m2..mi两两互质 则 a≡b(mod m1m2..mi);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值