算法时间复杂度基础

算法的时间复杂度(Time Complexity) 反映了程序执行时间随输入规模增长而增长的量级,在很大程度上能很好反映出算法的优劣与否。

算法时间复杂度,从数学上定义,给定算法A,如果存在函数F(n),当n=k时,F(k)表示算法A在输入规模为k的情况下的运行时间,则称F(n)为算法A的时间复杂度。

算法渐进时间复杂度,设F(n)为算法A在最坏情况下F(n),则如果F(n)属于Θ(g(n)),则说算法A的渐近时间复杂度为g(n),且g(n)为F(n)的渐近确界。

常见的时间复杂度,按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、k次方阶O(n^k)、指数阶O(2^n)。

当问题的规模n趋向无穷大时,时间复杂度T(n)的数量级(阶)称为算法的渐进时间复杂度。主要用算法时间复杂度的数量级(即算法的渐近时间复杂度)评价一个算法的时间性能。

参考文章:
- http://blog.csdn.net/popkiler/archive/2008/02/20/2110144.aspx
- http://www.cnblogs.com/leoo2sk/archive/2008/11/14/1332381.html

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值